Weighted Boundedness of Commutators of Riesz Transforms Associated with Schrödinger Operator*

Wenhua Gao1, †, Yinsheng Jiang2

(1. School of Applied Mathematics, Beijing Normal University Zhuhai, Zhuhai 519085, P.R.China)
(2. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R.China)

Abstract. In this paper, we consider Schrödinger operator $-\Delta + V(x)$ on $\mathbb{R}^n (n \geq 3)$, where $V(x)$ is non-zero, non-negative, and belongs to reverse Hölder classes B_q for some $q \geq \frac{n}{2}$. Let $T_1 = (-\Delta + V)^{-1}V, T_2 = (-\Delta + V)^{-\frac{1}{2}}V^{\frac{1}{2}}, T_3 = (-\Delta + V)^{-\frac{1}{2}}\nabla, T_4 = (-\Delta + V)^{-1}\nabla^2$. We show that the commutators $[b, T_j](j = 1, 2, 3, 4)$ are bounded operators from $L^p(\mu)$ to $L^r(\mu^{1-r})$, when $b \in \text{Lip}_{\beta, \mu}(0 < \beta < 1)$, for some weight function μ. The weighted boundedness of commutators of weighted BMO functions and $T_j(j = 1, 2, 3, 4)$ also are obtained similarly.

Key words: Schrödinger operator; Riesz transforms; Reverse Hölder classes; Weighted Lipschitz function; Commutator

MR(2000) Subject Classification: 42B20; 35B45; 35J15

1 Introduction

Let $P = -\Delta + V(x)$ be the Schrödinger differential operator on $\mathbb{R}^n, n \geq 3$. We assume that $V(x)$ is a non-zero, non-negative potential, and belongs to reverse Hölder classes B_q for some $q \geq \frac{n}{2}$. Let $T_j(j = 1, 2, 3, 4)$ be the Riesz transforms associated to Schrödinger operators, namely $T_1 = (-\Delta + V)^{-1}V, T_2 = (-\Delta + V)^{-\frac{1}{2}}V^{\frac{1}{2}}, T_3 = (-\Delta + V)^{-\frac{1}{2}}\nabla$ and $T_4 = (-\Delta + V)^{-1}\nabla^2$. J. Zhong (see[1]) proved that if V is a non-negative polynomial, $V^2(-\Delta + V)^{-1}, \nabla(-\Delta + V)^{-\frac{1}{2}}$ and $\nabla(-\Delta + V)^{-1}\nabla$ are Calderón-Zygmund operators. Z. Shen generalized these results (see[2]).

*Supported by the NNSF(10861010) of China.
†Corresponding author: gaowenhua@sina.com
proved that $\nabla (\Delta + V)^{-\frac{1}{2}} \nabla (\Delta + V)^{-\frac{1}{2}} \nabla$ and $\nabla (\Delta + V)^{-1} \nabla$ are Calderón-Zygmund operators, if V belongs to the reverse Hölder class B_n, which includes non-negative polynomials and allows some non-smooth potentials. Moreover, Z.Shen also shown L^p boundedness for T_1, T_2, T_3 and T_4 when $V \in B^+_2$. Recently, Z.Guo, P.Li and L. Peng (see [3]) studied L^p boundedness of commutators $[b, T_j] = bT_j - T_jb (j = 1, 2, 3, 4)$, when $b \in BMO(\mathbb{R}^n)$. Canqing Tang and Bolin Ma (see [4]) proved L^p boundedness of commutators $[b, T_j](j = 1, 2, 3, 4)$, when b is a Lipschitz function. In this paper we will generalize results in [3] and [4] to weighted case.

Definition 1 A non-negative locally L^q integrable function $V(x)$ on \mathbb{R}^n is said to belong to $B_q(1 < q < \infty)$, if there exists $C > 0$ such that the reverse Hölder inequality

$$(\frac{1}{|B|} \int_B V(y)^q dy)^{\frac{1}{q}} \leq C \left(\frac{1}{|B|} \int_B V(y) dy \right),$$

(1)

holds for every ball B in \mathbb{R}^n.

By Hölder inequality, it is easy to see that $B_{q_1} \subset B_{q_2} (q_1 > q_2 > 1)$. One remarkable feature about the B_q class is that, if $V \in B_q$ for some $q > 1$, then there exists $\epsilon > 0$, which depends only on n and the constant C in (1), such that $V \in B_{q+\epsilon}$ (see [5]). It is also well known that, if $V \in B_q(q > 1)$, then $V(x)dx$ is a doubling measure, namely for any $r > 0, x \in \mathbb{R}^n$, there exists a constant $C_0 > 0$ such that

$$\int_{B(y, 2r)} V(y) dy \leq C_0 \int_{B(x, r)} V(y) dy.$$

(2)

It was proved that if $V \in B_n$, then T_3 is a Calderón-Zygmund operator (see [2]). According to M.Paluszyński’s classical result in [6], if T is a Calderón-Zygmund operator, $b \in Lip_\beta (0 < \beta < 1)$ if and only if the commutator $[b, T]$ is bounded from L^p to L^q, where $1 < p < q < \infty$, $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$, then the commutator $[b, T_3]$ and $[b, T_4]$ are bounded from L^p to L^q, where $1 < p < q < \infty$, $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$. Bei Hu, Jiajun Gu in [7] shown that for $\mu \in A_1$, $b \in Lip_{\beta, \mu}$ if and only if the commutator $[b, T]$ is bounded from $L^p(\mu)$ to $L^q(\mu^{1-q})$, where $1 < p < q < \infty, 0 < \beta < 1$, and $\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n}$. However, in [3], the authors shown these kernels had no smoothness of C-Z kernel due to $V \in B_q$, for some $q > \frac{n}{2}$ and they discovered that the kernels have some other kind of smoothness.

Definition 2[3] $K(x, y)$ is said to satisfy $H(m)$ for some $m \geq 1$, if there exists a constant $C \geq 0$ such that, $\forall l > 0, x, x_0 \in \mathbb{R}^n$ with $|x - x_0| \leq l$, then

$$\sum_{k=0}^{\infty} k(2^k l)^\frac{m}{m'} \left(\int_{2^k l \leq |y-x_0| < 2^{k+1} l} |K(x, y) - K(x_0, y)|^m dy \right) < C,$$

(3)

where $\frac{1}{m} + \frac{1}{m'} = 1$.

2
We use 2k of it, then $K(x, y)$ satisfies $H(m)$, for $m \geq 1$. In [3], the authors proved that these kernels of $T_j (j = 1, 2, 3)$ satisfy $H(m)$, m in different ranges respectively.

We give some notations. A non-negative function μ defined on \mathbb{R}^n is called weight if it is locally integral. A weighted μ is said to belong to Muckenhoupt class $A_p(\mathbb{R}^n)$ for $1 < p < \infty$, if there exists a constant C such that

$$\frac{1}{|B|} \int_B \mu(x)dx \left(\frac{1}{|B|} \int_B \mu(x)\frac{1}{r^p} dx \right)^{(p-1)} \leq C$$

holds for every ball $B \subset \mathbb{R}^n$; The class $A_1(\mathbb{R}^n)$ is defined replacing the above inequality by

$$\frac{1}{|B|} \int_B \mu(x)dx \leq C \mu(x), \quad a.e. x \in \mathbb{R}^n$$

for every ball $B(\exists x) \subset \mathbb{R}^n$ (see [8]). It was well known that $A_{p_1} \subset A_{p_2}$, for $1 \leq p_1 \leq p_2 < \infty$ and $\mu \in A_1$ implies $\mu^{1-p} \in A_p (1 < p < \infty)$. We note that $A_\infty = \bigcup_{p \geq 1} A_p$.

Definition 3 We will say that a locally integrable function $f(x)$ belongs to the weighted $Lip_{\beta, \mu}^p$ for $1 \leq p < \infty, 0 < \beta < 1$ and $\mu \in A_\infty(\mathbb{R}^n)$, that is

$$\sup_{B} \frac{1}{\mu(B)^{\frac{\beta}{p}}} \left[\frac{1}{\mu(B)} \int_B |f(y) - f_B|^p \mu(y)^{1-p} dy \right]^{\frac{1}{p}} \leq C < \infty,$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$.

Modulo constants, the Banach space of such function is denoted by $Lip_{\beta, \mu}^p$. The smallest bound C satisfying conditions above is then taken to the norm of f in these spaces, and is denoted by $\|f\|_{Lip_{\beta, \mu}^p}$. Put $Lip_{\beta, \mu} = Lip_{\beta, \mu}^1$. Obviously, for the case $\mu = 1$, the $Lip_{\beta, \mu}$ is the classical Lip_{β} space.

Two basic facts about $Lip_{\beta, \mu}^p$ may be in order (see [9]).

For $\mu \in A_1,
\|f\|_{Lip_{\beta, \mu}^p} \sim \|f\|_{Lip_{\beta, \mu}}$, $\forall p > 1$. (7)

We use $2kB$ to denote the ball with the same center as B but with $2k$ times radius of it, then

$$|f_{2kB} - f_B| \leq C k \mu(B)^{\frac{\beta}{p}} \|f\|_{Lip_{\beta, \mu}}.$$ (8)

We also denote the fractional weighted maximum function of function $f(x)$ by

$$M_{\beta, \mu, r} f(x) = \sup_{x \in B} \left(\frac{1}{\mu(B)^{1 - \frac{\beta}{p}}} \int_B |f(y)|^r \mu(y) dy \right)^{\frac{1}{r}}, \quad 0 < r << \frac{n}{\beta}.$$ (9)

Our main theorems are as follows.

Theorem 1 Suppose $V \in B_q$ for some $q \geq \frac{n}{2}$, $r = \frac{1}{p} - \frac{\beta}{n}$ for $0 < \beta < 1$ and $q' < p < r < \infty$. Let $\mu \in A_1(\mathbb{R}^n) \cap B_{q_0}$, where $\epsilon_0 = \frac{(s_1 - 1)q'}{s_1 - q'}$ for some $s_1 \in (q', s)$ and
\(s \in (q', \frac{n}{\beta})\). Assume \(\mu^{1-p} \in A_{\frac{n}{q}}\). For every \(b \in \text{Lip}_{\beta, \mu}\), there exists a constant \(C_p\) such that

\[
\| [b, T_1] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}.
\]

Theorem 2 Suppose \(V \in B_q\) for some \(q \geq \frac{n}{2}\), \(\frac{1}{r} = \frac{1}{p} - \frac{\beta}{n}\) for \(0 < \beta < 1\) and \((2q)' < p < r < \infty\). Let \(\mu \in A_1(\mathbb{R}^n) \cap B_{\epsilon_0}\), where \(\epsilon_0 = \frac{(s_1-1)(2q)'}{s_1-2(2q)'}\) for some \(s_1 \in ((2q)', s)\) and \(s \in ((2q)', \frac{n}{\beta})\). Assume \(\mu^{1-p} \in A_{\frac{n}{\beta}}\). For every \(b \in \text{Lip}_{\beta, \mu}\), there exists a constant \(C_p\) such that

\[
\| [b, T_2] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}.
\]

Theorem 3 Suppose \(V \in B_q\) for some \(q \geq \frac{n}{2}\), \(\frac{1}{r} = \frac{1}{p} - \frac{\beta}{n}\) for \(0 < \beta < 1\), \(\frac{1}{q} = \frac{1}{n}\) and \(p_0' < p < r < \infty\). Let \(\mu \in A_1(\mathbb{R}^n) \cap B_{\epsilon_0}\), where \(\epsilon_0 = \frac{(s_1-1)p_0' s_1}{s_1-p_0'}\) for some \(s_1 \in (p_0', s)\) and \(s \in (p_0', \frac{n}{\beta})\). Assume \(\mu^{1-p} \in A_{\frac{n}{p_0}}\). For every \(b \in \text{Lip}_{\beta, \mu}\), then

\[
\| [b, T_3] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}.
\]

Let \(T^*\) denote adjoint operator of \(T\). We know that \(T_1^* = V(-\Delta + V)^{-\frac{1}{2}}, T_2^* = V^\frac{1}{2}(-\Delta + V)^{-\frac{1}{2}}, T_3^* = -\nabla(-\Delta + V)^{-\frac{1}{2}}\). By duality, under the same assumptions as in Theorem 1, 2 and 3, we can easily obtain that

\[
\| [b, T_1^*] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}, \quad 1 < p < q,
\]

\[
\| [b, T_2^*] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}, \quad 1 < p < 2q,
\]

\[
\| [b, T_3^*] \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}, \quad 1 < p < p_0,
\]

where \(\frac{1}{p_0} = \frac{1}{q} - \frac{1}{n}\).

We know that \(T_4^* = \nabla^2(-\Delta + V)^{-\frac{1}{2}}\). By Theorem 1, we conclude that

Corollary 1 Suppose \(V \in B_q\) for some \(q \geq \frac{n}{2}\), \(\frac{1}{r} = \frac{1}{p} - \frac{\beta}{n}\), \(0 < \beta < 1\) and \(1 < p < r < \infty\). Let \(\mu \in A_1(\mathbb{R}^n) \cap B_{\epsilon_0}\), where \(\epsilon_0 = \frac{(s_1-1)q'}{s_1-q}\) for some \(s_1 \in (q', s)\) and \(s \in (q', \frac{n}{\beta})\). Assume \(\mu^{1-p} \in A_{\frac{n}{q}}\). For every \(b \in \text{Lip}_{\beta, \mu}\), we have

\[
q' < p < \infty, \quad \| [b, T_4^*] f \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}
\]

and

\[
1 < p < q, \quad \| [b, T_4^*] f \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{\text{Lip}_{\beta, \mu}} \| f \|_{L^p(\mu)}.
\]

Remark 1 The results in [4] are the special cases of Theorem 1, 2 and Corollary 1, when \(\mu \equiv 1\).

We also consider the commutators of Riesz Transforms Associated to Schrödinger Operator and weighted BMO function.
\textbf{Definition 4} Let $1 \leq p < \infty$, and $\mu \in A_\infty(\mathbb{R}^n)$. We say a local integrable function $f(x)$ belongs to BMO_μ^p, if there exists a constant $C > 0$ such that
\[
\sup_B \left[\frac{1}{\mu(B)} \int_B |f(y) - f_B|^p \mu(y)^{1-p} dy \right]^{\frac{1}{p}} \leq C < \infty,
\]
where the supremum is taken over all balls $B \subset \mathbb{R}^n$.

Modulo constants, the Banach space of such function is denoted by BMO_μ^p. The smallest bound C satisfying conditions above is then taken to the norm of f in these spaces, and is denoted by $\|f\|_{BMO_\mu^p}$. Put $BMO_\mu = BMO_\mu^1$. Obviously, for the case $\mu = 1$, the BMO_μ is the classical BMO space.

Two basic facts about BMO_μ may be in order (see [9]).
\[
\mu \in A_1, \quad \|f\|_{BMO_\mu^p} \sim \|f\|_{BMO_\mu}, \quad \forall p > 1. \tag{10}
\]
We use $2^k B$ to denote the ball with the same center as B but with 2^k times radius of it, then
\[
|f_{2^k B} - f_B| \leq C(k + 1)\|f\|_{BMO_\mu}. \tag{11}
\]
Applying the same proving routine of theorems and corollaries above, we can easily obtain the following theorems and corollary.

\textbf{Theorem 4} Suppose $V \subset B_q$ for some $q \geq \frac{n}{2}$, $q' \leq p < \infty$. Let $\mu \in A_1(\mathbb{R}^n) \cap B_{e_0}$, where $e_0 = \frac{(s_1-1)q'}{s_1-q'}$ with some $s_1 \in (q', s)$ and $s > q'$. Assume $\mu^{1-p} \in A_{\frac{p}{p'}}$. For every $b \in BMO_\mu$, there exists a constant $C_{p'}$ such that
\[
\|[b, T_1]f\|_{L^p(\mu^{1-p})} \leq C_{p'}\|b\|_{BMO_\mu}\|f\|_{L^p(\mu)}. \tag{12}
\]

\textbf{Theorem 5} Suppose $V \subset B_q$ for some $q \geq \frac{n}{2}$, $(2q)' < p < \infty$. Let $\mu \in A_1(\mathbb{R}^n) \cap B_{e_0}$, where $e_0 = \frac{(s_1-1)(2q)}{s_1-(2q)}$ with some $s_1 \in ((2q)', s)$ and $s > (2q)'$. Assume $\mu^{1-p} \in A_{\frac{p}{p'}}$. For every $b \in BMO_\mu$, there exists a constant $C_{p'}$ such that
\[
\|[b, T_2]f\|_{L^p(\mu^{1-p})} \leq C_{p'}\|b\|_{BMO_\mu}\|f\|_{L^p(\mu)}. \tag{13}
\]

\textbf{Theorem 6} Suppose $V \subset B_q$ for some $q \geq \frac{n}{2}$, $\frac{1}{p} = \frac{1}{q} - \frac{1}{n}$ and $p_0' < p < r < \infty$. Let $\mu \in A_1(\mathbb{R}^n) \cap B_{e_0}$, where $e_0 = \frac{(s_1-1)p_0'}{s_1-p_0}$ with some $s_1 \in (p_0', s)$ and $s > p_0'$. Assume $\mu^{1-p} \in A_{\frac{p}{p_0'}}$. For every $b \in BMO_\mu$, there exists a constant C_p such that
\[
\|[b, T_3]f\|_{L^r(\mu^{1-p})} \leq C_p\|b\|_{BMO_\mu}\|f\|_{L^r(\mu)}. \tag{14}
\]

\textbf{Corollary 3} Suppose $V \subset B_q$ for some $q \geq \frac{n}{2}$. Let $\mu \in A_1(\mathbb{R}^n) \cap B_{e_0}$, where $e_0 = \frac{(s_1-1)q'}{s_1-q'}$ with $s_1 \in (q', s)$ and $s > q'$. Assume $\mu^{1-p} \in A_{\frac{p}{q'}}$. For every $b \in BMO_\mu$, there exists a constant C_p such that
\[
q' < p < \infty, \quad \|[b, T_4]f\|_{L^p(\mu^{1-p})} \leq C_p\|b\|_{BMO_\mu}\|f\|_{L^p(\mu)} \tag{15}
\]
5
and
\[1 < p < q, \quad \| [b, T_A^s] f \|_{L^p(\mu^{1-p})} \leq C_p \| b \|_{BMO(\mu)} \| f \|_{L^p(\mu)}. \]

Remark 2 The results in [3] are special cases of Theorem 4, 5, 6 and Corollary 3, when \(\mu \equiv 1 \).

2 Proofs of Lemmas and Theorems

Proofs of Theorem 1, 2 and 3 mainly depend on the following Proposition 1. We first discuss the problem for general operator \(T f(x) = \int K(x, y) f(y) dy \). Later, we will specialize to \(T_j(j = 1, 2, 3) \). Although employed to prove Theorem 1, 2 and 3, Proposition 1 has its independent significance, for the weight function \(\mu \) in Proposition 1 is weaker than those in Theorem 1, 2 and 3.

Proposition 1 Let \(m > 1, m' < p < r < \infty \) and \(\frac{1}{r} = \frac{1}{p} - \frac{\beta}{n} \) for \(0 < \beta < 1 \). Suppose \(K \) satisfies \(H(m) \). Assume \(\mu \in A_1(\mathbb{R}^n) \cap B_{c_0} \), where \(\epsilon_0 = \frac{(s_1 - 1)m'}{s_1 - m'} \) for some \(s_1 \in (m', s) \) and \(m' < s < \frac{n}{\beta} \). Moreover, \(T \) is bounded on \(L^q(\mu^{1-q}) \) for every \(q \in (m', \infty) \). For every \(b \in Lip_{\beta, \mu} \), then \([b, T]\) is bounded from \(L^p(\mu) \) to \(L^r(\mu^{1-r}) \) for every \(p \in (m', \infty) \), and
\[
\| [b, T] f \|_{L^r(\mu^{1-r})} \leq C_p \| b \|_{Lip_{\beta, \mu}} \| f \|_{L^p(\mu)}. \tag{12}
\]

We adopt the Störmberg’s idea. Proposition 1 follows immediately from the following Lemma 1 and a theorem of Fefferman-Stein on sharp function.

Lemma 1 Let \(m > 1, \frac{1}{r} = \frac{1}{p} - \frac{\beta}{n} \) for \(0 < \beta < 1 \) and \(s \in (m', \frac{n}{\beta}) \). Assume \(K \) satisfies \(H(m) \) and \(\mu \in A_1(\mathbb{R}^n) \cap B_{c_0} \), where \(\epsilon_0 = \frac{(s_1 - 1)m'}{s_1 - m'} \) for some \(s_1 \in (m', s) \). Suppose \(T \) is bounded on \(L^q(\mu^{1-q}) \) for every \(q \in (m', \infty) \). Then there exists constant \(C_s > 0 \) such that \(\forall f \in L^1_{loc}, b \in Lip_{\beta, \mu} \),
\[
M^\#(b, T f)(x) \leq C_s \mu(x) \| b \|_{Lip_{\beta, \mu}} \left\{ M_{\beta, \mu, s}(T f)(x) + M_{\beta, \mu, s}(f)(x) \right\} \tag{13}
\]
holds.

Proof. Fix \(s \in (m', \frac{n}{\beta}) \), \(f \in L^1_{loc} \), \(x \in \mathbb{R}^n \), and fix a ball \(B = B(x_0, l) \) with \(x \in B \). We only need to control \(J = \frac{1}{|B|} \int_B \| [b, T] f(y) - ([b, T] f)_B \| dy \) by the right side of (13). Let \(f = f_1 + f_2 \), where \(f_1 = f \chi_{32B}, f_2 = f - f_1 \). Then \([b, T] f = [b - b_B, T] f = (b - b_B) (T f - T(b - b_B) f_1 - T(b - b_B) f_2) = A_1 f + A_2 f + A_3 f \), and we get
\[
J \leq \frac{1}{|B|} \int_B |A_1 f(y) - A_1 f_B| dy
\]

6
+ \frac{1}{|B|} \int_B |A_2 f(y) - A_2 f_B| dy + \frac{1}{|B|} \int_B |A_3 f(y) - A_3 f_B| dy
= J_1 + J_2 + J_3.

For J_1, by Hölder's inequality and (7), we can obtain

$$J_1 \leq C \frac{1}{|B|} \int_B |A_1 f(y)| dy$$
$$= C \frac{1}{|B|} \int_B |(b - b_B) T f(y)| dy$$
$$\leq C \frac{1}{|B|^{\frac{1}{n}}} \left(\frac{1}{|B|} \int_B |b - b_B|^s \mu(y)^{1-s'} dy \right)^{\frac{1}{2}} \left(\frac{1}{|B|^{1 - \frac{s'}{n}}} \int_B |T f(y)| \mu(y) dy \right)^{\frac{1}{2}}$$
$$\leq C \frac{\mu(B)}{|B|} \frac{1}{\mu(B)^{\frac{1}{n}}} \left(\frac{1}{\mu(B)} \int_B |b - b_B|^s \mu(y)^{1-s'} dy \right)^{\frac{1}{2}} \left(\mu(B)^{1 - \frac{s'}{n}} \int_B |T f(y)| \mu(y) dy \right)^{\frac{1}{2}}$$
$$\leq C \mu(x) \|b\|_{L^{p,\beta,\mu}} M_{\beta,\mu}(T f)(x).$$

Considering J_2, we fix s_1 such that $s > s_1 > m'$, and let $s_2 = \frac{ns_1}{s - s_1}$. Since weighted $L^{s_1}(\mu^{1-s_1})$ boundedness of T, we can obtain

$$J_2 \leq C \frac{1}{|B|} \int_B |T((b - b_B) f_1)(y)| dy$$
$$\leq C \left(\frac{1}{|B|} \int_B |T((b - b_B) f_1)(y)|^{s_1} \mu(y)^{1-s_1} dy \right)^{\frac{1}{s_1}} \left(\frac{1}{|B|} \int_B \mu(y) dy \right)^{\frac{s_1-1}{s_1}}$$
$$\leq C \left(\frac{1}{|B|} \int_B |(b(y) - b_B)| f_1(y)|\mu(y)^{1-s_1} dy \right)^{\frac{1}{s_1}} \left(\mu(B) \frac{1}{|B|} \right)^{\frac{s_1-1}{s_1}}$$
$$\leq C \left(\frac{\mu(B)}{|B|} \frac{1}{\mu(B)^{\frac{1}{n}}} \left(\frac{1}{\mu(32B)^{\frac{1}{n}}} \int_{32B} |b(y)| \mu(y) dy \right)^{\frac{1}{2}} \right)^{\frac{1}{s_1}}$$
$$\leq C \mu(x) \|b\|_{L^{p,\beta,\mu}} M_{\beta,\mu}(f)(x).$$

To estimate J_3, we set $c_B = \int_{|z - x_0| > 32t} K(x_0, z)(b(z) - b_B) f(z) dz$, then

$$J_3 \leq C \frac{1}{|B|} \int_B |A_3 f(y) - c_B| dy$$
$$\leq C \frac{1}{|B|} \int_B \int_{|z - x_0| > 32t} |K(y, z) - K(x_0, z)|(b(z) - b_B) f(z) dz dy$$
$$= C \frac{1}{|B|} \int_B \sum_{k=5}^{\infty} \int_{2^k \leq |z - x_0| < 2^{k+1}} \left| [(K(y, z) - K(x_0, z))(b(z) - b_B) f(z)] dz \right| dy$$

7
\begin{align*}
\leq & \frac{C}{|B|} \int_B \sum_{k=5}^{\infty} \left\{ \int_{2^k |z-x_0| < 2^{k+1}} |K(y,z) - K(x_0,z)|^m dz \right\}^{\frac{1}{m}} |(2^k l)|^{\frac{s}{m}} k \\
& \times \left(\frac{1}{(2^k l)^{|s\beta - m|}} \int_{|z-x_0| < 2^{k+1}} |(b(z) - b_B) f(z)|^m dz \right)^{\frac{1}{m}} dy \\
\leq & \sup_{k \geq 5} \frac{1}{k} \left\{ \int_{|z-x_0| < 2^{k+1}} |(b(z) - b_B) f(z)|^m dz \right\}^{\frac{1}{m}} \\
\leq & C \sup_{k \geq 5} \frac{1}{k} \left\{ \int_{|z-x_0| < 2^{k+1}} |(b(z) - b_{2^{k+1}} + b_{2^{k+1}} - b_B) f(z)|^m dz \right\}^{\frac{1}{m}} \\
& \times \left\{ \int_{|z-x_0| < 2^{k+1}} |(b_{2^{k+1}} - b_B) f(z)|^m dz \right\}^{\frac{1}{m}} \\
\leq & C \sup_{k \geq 5} \frac{1}{k} \left(E_1 + E_2 \right).
\end{align*}

For E_1, fix $s_1 \in (m', s)$, then $\frac{s_1}{m'} > 1, \left(\frac{s_1}{m'} \right)' = \frac{s_1}{s_1 - m'}; \frac{s}{m'} > 1, \left(\frac{s}{m'} \right)' = \frac{s}{s-m'}$. Applying Hölder’s inequality twice, by $\mu \in B_{\epsilon_0}, \epsilon_0 = \frac{(s_1-1)m'}{s_1-m'}$, we can get

\begin{align*}
E_1 &= \left\{ \frac{C}{|2^{k+1} B|} \int_{2^{k+1} B} |(b(z) - b_{2^{k+1}}) \mu(z) \right\}^{(s_1-1)} \left\{ f(z) \mu(z) \right\}^{s_1} |m' \mu(z)^{m'(1 - \frac{1}{s_1})} dz \right\}^{\frac{1}{m'}} \\
& \leq \left\{ \frac{C}{|2^{k+1} B|} \int_{2^{k+1} B} |(b(z) - b_{2^{k+1}}) \mu(z) \right\}^{(s_1-1)} \left\{ f(z) \mu(z) \right\}^{s_1} | \mu(z) \right\}^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \times \left\{ \int_{2^{k+1} B} |(b(z) - b_{2^{k+1}}) \mu(z) |^{s_1-1} | \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \leq \left\{ \frac{C}{|2^{k+1} B|} \int_{2^{k+1} B} |f(z) |^{s_1} | \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \times \left\{ \frac{1}{|2^{k+1} B|} \int_{2^{k+1} B} |(b(z) - b_{2^{k+1}}) \mu(z) |^{s_1} | \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \leq \left\{ \frac{1}{|2^{k+1} B|} \int_{2^{k+1} B} |f(z) |^{s_1} | \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \times \left\{ \frac{1}{|2^{k+1} B|} \int_{2^{k+1} B} |(b(z) - b_{2^{k+1}}) \mu(z) |^{s_1} | \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \leq C \mu(x) \|b\|_{Lip_{\beta, \mu, M_{\beta, \mu, s}}}(f)(x).
\end{align*}

For E_2, since $\frac{s}{m'} > 1, \left(\frac{s}{m'} \right)' = \frac{s}{s-m'}$, applying Hölder’s inequality, $\mu \in A_1(\mathbb{R}^n)$ and the fact $|b_{2^{k+1}} - b_B| \leq C(k+1) \mu(2^{k+1} B) \frac{m'}{m} \|b\|_{Lip_{\beta, \mu}}$, we can get

\begin{align*}
E_2 &= |b_{2^{k+1}} - b_B| \left\{ \frac{1}{|2^{k+1} B|} \int_{2^{k+1} B} |f(z) |^{s_1} | \mu(z) |^{s_1} \mu(z) |^{s_1} dz \right\}^{\frac{1}{m'}} \\
& \leq C \mu(x) \|b\|_{Lip_{\beta, \mu, M_{\beta, \mu, s}}}(f)(x).
\end{align*}
\[\leq |b_{2^{k+1}B} - b_B| \left\{ \frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} |f(z)|^s \mu(z) dz \right\}^{\frac{1}{s}} \times \left\{ \frac{1}{|2^{k+1}B|} \int_{2^{k+1}B} \mu(z) \left(-\frac{m'}{\lambda} + \frac{\nu}{\lambda} \right)' dz \right\}^{\frac{1}{\nu'}} \leq C(k + 1) \left(\frac{\mu(2^{k+1}B)}{|2^{k+1}B|} \right)^{\frac{1}{s}} \|b\|_{Lip_{\beta,p}} \left\{ \frac{1}{\mu(2^{k+1}B)} \right\}^{\frac{1}{s}} \times \left\{ \int_{2^{k+1}B} \mu(z) \left(-\frac{1}{\lambda^2} \right) dz \right\}^{\frac{1}{\lambda^2 - 1}} \leq C(k + 1) \left(\frac{\mu(2^{k+1}B)}{|2^{k+1}B|} \right)^{\frac{1}{s}} \|b\|_{Lip_{\beta,p}} M_{\beta,p,s}(f)(x) \left(\frac{|2^{k+1}B|}{\mu(2^{k+1}B)} \right)^{\frac{1}{s}} \leq C(k + 1) \mu(x) \|b\|_{Lip_{\beta,p}} M_{\beta,p,s}(f)(x). \]

Combining estimates of \(E_1 \) and \(E_2 \), we obtain

\[
J_3 = C \sup_{k \geq 5} \frac{1}{k} \left(E_1 + E_2 \right) \leq C \sup_{k \geq 5} \frac{k + 1}{k} \mu(x) \|b\|_{Lip_{\beta,p}} M_{\beta,p,s}(f)(x) \leq C \mu(x) \|b\|_{Lip_{\beta,p}} M_{\beta,p,s}(f)(x). \]

This completes the proof of Lemma 1.

Proof of Proposition 1. From Lemma 1, since \(\mu \in A_1(\mathbb{R}^n) \) implies \(\mu^{1-r} \in A_r(\mathbb{R}^n) \), we can get

\[
\|b, T \|_{L^r(\mu^{1-r})} \leq \|M^\#(b, T \|f(x)\|_{L^r(\mu^{1-r})} \leq C \|b\|_{Lip_{\beta,p}} \left(\|M_{\beta,p,s}(Tf)\|_{L^r(\mu)} + \|M_{\beta,p,s}(f)\|_{L^r(\mu)} \right) \leq C \|b\|_{Lip_{\beta,p}} \|f\|_{L^p(\mu)}. \]

Proof of Theorem 1 Firstly, by (1) of Theorem 1.7 in [8],

\[
|T_1 f(x)| \leq C M \left(|f^{\#}| \right)^{\frac{2}{p'}}(x) \quad (f \in C_0^\infty(\mathbb{R}^n)), \]

where \(\frac{1}{q} + \frac{1}{q'} = 1 \). \(\forall p > q' \), since \(\mu^{1-p} \in A_{q'}, \) it is known that \(M \) is bounded on \(L^p(\mu^{1-p}) \). Hence \(T_1 \) is bounded on \(L^p(\mu^{1-p}) \). Since Z.Guo, P.Li and L.Peng have shown that the kernel \(K_1 \) of \(T_1 \) satisfies \(H(q) \) in [1], from Proposition 1, we can get Theorem 1.

Proof of Theorem 2 We can get \(L^p(\mu^{1-p}) \) boundedness of \(T_2 \) from Proof of Theorem 5.10 in [6]. For the sake of complete, we give the sketch as follow. It follows from [6] that

\[
T_2^* f(x) \leq C \int_{\mathbb{R}^n} \frac{V(x)^{1/2} f(y) dy}{\left(1 + m(y, V) |x - y| \right)^{k|x - y|^{n-1}}}, \]

where \(V(x) \) is the kernel of \(T_2 \).
and
\[|T_2 f(x)| \leq C \left\{ M(|f|^{(2q)'}) (x) \right\}^{\frac{1}{2q'}}, \]
\[\forall p > (2q)', \text{ since } \mu^{1-p} \in A_{\frac{p}{(2q)'}, } \text{ it is known that } M \text{ is bounded on } L^{\frac{p}{2q'}} (\mu^{1-p}). \]

Hence
\[\|T_2 f(x)\|_{L^p(\mu^{1-p})} \leq C\| f\|_{L^p(\mu^{1-p})}, \quad \text{for} \quad (2q)' < p < \infty. \]

Since Z.Guo, P.Li and L.Peng have shown that the kernel \(K_2 \) of \(T_2 \) satisfies \(H((2q)') \) in [1], from Proposition 1, we can get Theorem 2.

Proof of Theorem 3 \(L^p(\mu^{1-p}) \) boundedness of \(T_3 \) can be obtained by the following estimate
\[|T_3 f(x)| \leq C \left\{ M(|f|^{p_0'}) (x) \right\}^{\frac{1}{p_0'}} + 2\mathcal{T} f(x), \]
where \(q < n, \frac{1}{p_0'} = \frac{1}{q} - \frac{1}{n} \) and \(\mathcal{T} = \nabla(-\Delta)^{-\frac{1}{2}} \) is a Calderón-Zygmund operator, which can be found in [6].

Because \(p_0' < p < \infty \), and \(\mu^{1-p} \in A_{\frac{p}{p_0}, } \subset A_p \), we have
\[\|T_3 f\|_{L^p(\mu^{1-p})} \leq C \left\{ \int_{\mathbb{R}^n} \left\{ M(|f|^{p_0'}) (x) \right\}^{\frac{p}{p_0'}} \mu^{1-p} dx \right\}^p + C\| f\|_{L^p(\mu^{1-p})} \]
\[\leq C \left\{ \int_{\mathbb{R}^n} \left\| (2q)' (x) \right\|^{\frac{p}{2q'}} \mu^{1-p} dx \right\}^p + C\| f\|_{L^p(\mu^{1-p})} \]
\[= C\| f\|_{L^p(\mu^{1-p})}. \]

Since Z.Guo, P.Li and L.Peng have shown that the kernel \(K_3 \) of \(T_3 \) satisfies \(H(p_0') \) in [1], from Proposition 1, we can get Theorem 3.

Proof of Corollary 1. Because
\[T_4 = (-\Delta + V)^{-1}\nabla^2 = (-\Delta + V)^{-1}(-\Delta)(-\Delta)^{-1}\nabla^2 \]
\[= (I - (-\Delta + V)^{-1}V)\nabla^2 (-\Delta) = (I - T_1)\nabla^2 (-\Delta), \]
we get
\[[b, T_4] = [b, I - T_1]\nabla^2 (-\Delta) - (I - T_1)[b, \nabla^2 (-\Delta)], \quad (14) \]

So, according to \((L^p(\mu), L^r(\mu^{1-r})) \) boundedness of \([b, I - T_1]|(Theorem 1) \) and \([b, \nabla^2 (-\Delta)]|\text{see [4]}, \]
\(L^r(\mu^{1-r}) \) boundedness of \(I - T_1 \), and \(L^p(\mu) \) boundedness of \(\frac{\nabla^2}{(-\Delta)} \text{ (see [7])} \), we can get
\[\|[b, T_4] f\|_{L^r(\mu^{1-r})} \leq \|[b, I - T_1]\nabla^2 (-\Delta)f\|_{L^r(\mu^{1-r})} + \|(I - T_1)[b, \nabla^2 (-\Delta)] f\|_{L^r(\mu^{1-r})} \]
\[\leq C\|b\|_{L^{p_0}(\overline{\mu})} \|\nabla^2 (-\Delta) f\|_{L^p(\mu)} + C\|b, \nabla^2 (-\Delta) f\|_{L^r(\mu^{1-r})} \]
\[\leq C\|b\|_{L^{p_0}(\overline{\mu})} \| f\|_{L^p(\mu)}. \]
References

