Biography
Dr. Kiichi Niitsu
Dr. Kiichi Niitsu
Nagoya University, Japan
Title: CMOS biomedical IoT design for tissue engineering and regenerative medicine
Abstract: 

CMOS Biosensor is promising enabler for next-generation biomedical IoTs for personalized health care systems. This tutorial introduces CMOS biomedical IoT design from fundamental to state-of-the-art.
First, the tutorial introduces the fundamental of CMOS biosensors. Operational mechanism and applications of each types of CMOS biosensors such as potentiometric, amperometric, impedimetric, and ISFET are summarized.
Latter part introduces development of energy-autonomous biomedical IoTs. Ensuring stable energy is one of the most important current challenges in wearable and implantable biomedical systems. For addressing this issue, many developments with respect to batteries, wireless power delivery, and energy harvesting have been reported. One of the promising candidates is bio fuel cell. In this tutorial, the fundamental and forecast of the bio-fuel-cell-operated biosensing systems. Firstly, I will summary the fundamental basics of bio fuel cell including operation mechanism, its performance, and its advantages/disadvantages. Secondary, I will introduce the examples of the bio-fuel-cell-operated biosensing systems. Thirdly, I will introduce the supply-sensing architecture presented in BioCAS 2015/2016 from our group. The supply-sensing architecture uses bio-fuel cells as both power source and sensing converter. In addition, I will plan to present the latest result on the work on Glucose-fuel-cell-operated Glucose sensing system which can be applied to self-powered continuous Glucose monitoring system (CGMS). The tutorial will conclude with a discussion of recent work and future applications on the bio-fuel-cell-operated biosensing systems.

Biography: 

Kiichi Niitsu (S'05-M'10) was born in Japan, in 1983. He received the B.S. degree summa cum laude, M.S. and Ph.D. degrees in electrical engineering from Keio University, Yokohama, Japan, in 2006, 2008, and 2010, respectively. From 2010, he was an Assistant Professor at Gunma University, Kiryu, Japan. From 2012, he was a Lecturer at Nagoya University, Nagoya, Japan. Since 2016, he is currently an Associate Professor at Nagoya University, Nagoya, Japan. Since 2015, he serves concurrently as Precursory Research for Embryonic Science and Technology (PRESTO) researcher, Japan Science and Technology Agency (JST). His current research interest lies in the low-power and high-speed technologies of analog and digital VLSI circuits for biomedical application.
From 2008 to 2010, Dr. Niitsu was a Research Fellow of the Japan Society for the Promotion of Science (JSPS), a Research Assistant of the Global Center of Excellence (GCOE) Program at Keio University and a Collaboration Researcher of the Keio Advanced Research Center (KARC).
He was awarded the 2006 KEIO KOUGAKUKAI Award, the 2007 INOSE Science Promotion Award, the 2008 IEEE SSCS Japan Chapter Young Researcher Award and the 2009 IEEE SSCS Japan Chapter Academic Research Award both from IEEE Solid-State Circuits Society Japan Chapter, the 2008 FUJIWARA Award from the FUJIWARA foundation, 2011 YASUJIRO NIWA Outstanding Paper Award, 2011 FUNAI Research Promotion Award, 2011 Ando Incentive Prize for the Study of Electronics, 2011 Ericsson Young Scientist Award, 2012 ASP-DAC University LSI Design Contest Design Award, NF Foundation R&D Encouragement Award, AKASAKI Award from Nagoya University, IEEE Nagoya Section Young Researcher Award, IEEE Biomedical Circuits and Systems Conference 2016 (BioCAS 2016) Best Paper Award, and the 2017 Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, the Young Scientists' Prize.
He has published 54 referred original journal papers, 114 international conference papers, and 3 book chapters including 3 TBioCAS, 1 TCAS-I, 1 TCAS-II, 5 JSSC, 5 TVLSI, 9 BioCAS, 1 ISCAS, 2 ICECS, 7 APCCAS, 2 ISSCC, 4 Symp. on VLSI Circuits, 4 A-SSCC. He served as a technical committee of IEEE biomedical circuits and systems (BioCAS TC), a Review Committee Member of ISCAS 2017/2018, a Technical Program Committee of ICECS 2018, a Review Committee Member of APCCAS 2014, an editorial committee of IEICE Transactions on Electronics, Special Section on Analog Circuits and Related SoC Integration Technologies, and an editorial committee of IEICE ESS Fundamental Review. He is a member of IEEE, IEICE (the Institute of Electronics, Information and Communication Engineers of Japan), and JSAP (the Japan Society of Applied Physics).