Table of Contents

Part I SCET 2014 Conference Schedule ... 2

Part II Invited Speeches .. 3

Part III Oral Sessions .. 9
 Session 1: Agriculture and Food Engineering (AFE-S)...................................... 9
 Session 2: Mathematics and Physics (AEM-S&CAP-S)-Invited Speech 10
 Session 3: Material Sciences and Technology I (MST-S)................................. 10
 Session 4: Chemical Engineering (CEN-S).. 11
 Session 5: Biomedical Engineering and Biotechnology (BEB-S) 13
 Session 6: Applied Mathematics (AEM-S)... 14
 Session 7: Material Sciences and Technology 2 (MST-S)............................... 15
 Session 8: Advances in Physics (CAP-S)... 16

Part IV Appendix .. 18
 Session 3: Material Sciences and Technology I (MST-S)................................. 21
 Session 4: Chemical Engineering (CEN-S).. 25
 Session 5: Biomedical Engineering and Biotechnology (BEB-S) 32
 Session 6: Applied Mathematics (AEM-S)... 36
 Session 7: Material Sciences and Technology 2 (MST-S)............................... 39
 Session 8: Advances in Physics (CAP-S)... 44

Part V Instructions for Presentations ... 50

Part VI Hotel Information ... 51

Contact Us .. 52
Part I SCET 2014 Conference Schedule

Registration
April 16~18, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-17:00</td>
<td>April 16</td>
<td>1st floor, Grand Mercure Baolong Shanghai</td>
</tr>
<tr>
<td>08:30-12:00</td>
<td>April 17</td>
<td>3rd floor, Grand Mercure Baolong Shanghai</td>
</tr>
</tbody>
</table>

Thursday Morning, April 17, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30-12:30</td>
<td>Session 1: Agriculture and Food Engineering</td>
<td>HuiRen Room (荟仁厅)</td>
</tr>
<tr>
<td></td>
<td>Session 2: Mathematics and Physics-Invited Speech</td>
<td>HuiXian Room (荟贤厅)</td>
</tr>
<tr>
<td></td>
<td>Session 3: Material Sciences and Technology (1)</td>
<td>HuiZhi Room (荟智厅)</td>
</tr>
<tr>
<td></td>
<td>Session 4: Chemical Engineering</td>
<td>HuiLI Room (荟礼厅)</td>
</tr>
</tbody>
</table>

Thursday Noon, April 17, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00-13:00</td>
<td>Lunch Buffet</td>
<td>TianDi Restaurant (天地自助餐厅), 1st floor, Grand Mercure Baolong Shanghai</td>
</tr>
</tbody>
</table>

Thursday Afternoon, April 17, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00-18:00</td>
<td>Session 5: Biomedical Engineering and Biotechnology</td>
<td>HuiRen Room (荟仁厅)</td>
</tr>
<tr>
<td></td>
<td>Session 6: Applied Mathematics</td>
<td>HuiXian Room (荟贤厅)</td>
</tr>
<tr>
<td></td>
<td>Session 7: Material Sciences and Technology (2)</td>
<td>HuiZhi Room (荟智厅)</td>
</tr>
<tr>
<td></td>
<td>Session 8: Advances in Physics</td>
<td>HuiLI Room (荟礼厅)</td>
</tr>
</tbody>
</table>

Thursday Evening, April 17, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:00-19:00</td>
<td>Dinner Buffet</td>
<td>TianDi Restaurant (天地自助餐厅), 1st floor, Grand Mercure Baolong Shanghai</td>
</tr>
</tbody>
</table>

Friday 18, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00-18:00</td>
<td>Tour to Zhouzhuang (at own expense)</td>
<td></td>
</tr>
</tbody>
</table>
Invited Speech: Boosting the food Functionality (In Vivo and in Vitro) of locally Grown Spirulina by Gamma Radiation: An Inspiring Approach

Speaker: Prof. Hossain Uddin Shekhar, University of Dhaka, Bangladesh
Time: 08:30-09:10, April 17, 2014
Location: Oral session 1, HuiRen Room (荟仁厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

Functional food contains known biologically active compounds, which provides a clinically proven and documented health benefit, and thus, an important source in the prevention, management and treatment of chronic diseases of the modern age. Spirulina, a well known functional food worldwide is treated by gamma radiation for enhanced functionality. The samples are irradiated by 60Co gamma radiation by different doses such as 5, 10, 15, 20, 25 and 30 kGy at a dose rate of 5 kGy per hour. Biological activity of the irradiated samples was tested both in vitro and in vivo. Samples exposed to 15kGy was found to be most functionally active in terms of Triglyceride, cholesterol and low density lipoprotein (LDL) lowering activity; sugar and fat binding capacity; water retention, holding and swelling capacity and phenolic contents and free radical scavenging activity. The results are very inspiring and show its high potentiality as a food supplement for lowering risk of heart disease and diabetic mellitus.

Invited Speech: A Survey of Natural Variation in Metabolites and Transcripts among Conventional Maize Hybrids to Evaluate Omics Technologies for Crop Safety Assessment

Speaker: Dr. Xiaofeng Sean Yang, Monsanto Company, USA
Time: 09:10-09:50, April 17, 2014
Location: Oral session 1, HuiRen Room (荟仁厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

Genetically-modified (GM) crops have been developed to increase productivity from current agricultural practices. Their current safety assessment includes in-depth studies of phenotypic,
agronomic, morphological, and compositional profiles to identify potential harmful effects. Advances in open-ended molecular profiling technologies (i.e. Omics) raises the question of whether these methods should be used for the safety assessment. One of many challenges to the use of Omics technologies for this purpose is the rational determination of biologically meaningful differences in the GM crops in relation to control samples. To this end, the extent of the inherent natural variation in non-GM crops must first be known to ascertain if changes detected by an analytical technology are due to the introduced transgene or are the result of changes due to genetic and environmental variability. In this report we have evaluated metabolite and RNA profiling technologies to begin to understand the natural variation in these biomolecules found in commercial-quality, conventional (non-GM) maize hybrids. Our analyses focus on mature grain, the article of commerce that is most typically subjected to the rigorous studies involved in the comparative safety assessment of GM products. We have used a population of conventionally-bred maize hybrids that derive from closely related inbred parents grown under standard field conditions across geographically similar locations. This study highlights the large amount of natural variation in metabolites and transcripts across conventional maize germplasm grown under normal field conditions, and underscores the critical need for further extensive studies before these technologies can be seriously considered for utility in the comparative safety assessment of GM crops.

Invited Speech: Adapted Solution, Numerical Methods and Analysis via Malliavin Calculus for a Uni- ed B-SPDE and Their Applications in Finance

Speaker: Prof. Wanyang Dai, Nanjing University, China
Time: 08:30-09:10, April 17, 2014
Location: Oral session 2, HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

The aim of this research is to study the adapted solution, numerical methods, and related convergence analysis for a unified backward stochastic partial differential equation (B-SPDE). The equation is vector-valued, whose drift and diffusion coefficients may involve nonlinear and high-order partial differential operators. Under certain generalized Lipschitz and linear growth conditions, the existence and uniqueness of adapted solution to the B-SPDE are justified. The methods are based on completely discrete schemes in terms of both time and space. The analysis concerning error estimation or rate of convergence of the methods is conducted. The key of the analysis is to develop new theory for random field based Malliavin calculus to prove the existence and uniqueness of adapted solutions to the first-order and second-order Malliavin derivative based B-SPDEs under random environments. Furthermore, we will also address the related issues of our unified B-SPDE involving jumps. In addition, we will present the applications of our unified B-SPDE in finance, particularly, in the fields of optimal portfolio decision-making and mean-variance hedging with external random environmental risk factors.
Invited Speech: Complex systems and emergence: How theory meets reality

Speaker: Prof. Jianbo Gao, Wright State University, USA
Time: 09:10-09:50, April 17, 2014
Location: Oral session 2, HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

Emergent behaviors of complex systems have fascinated mankind for aeons. It is only in recent decades that extensive efforts have been made to quantitatively study them, resulting in important theories and tools such as chaos theory, random fractal theory, and multiscalar analyses. This talk aims to convey the best practices in this vast field, emphasizing theory meets reality. As illustrative examples, cyber-security, financial crises, river flow dynamics, and world-wide political conflicts will be briefly discussed. Important future research directions will also be outlined.

Invited Speech: Discrete Symmetry in Relativistic Quantum Mechanics

Speaker: Prof. Guang-Jiong NI, Portland State University, USA
Time: 09:50-10:30, April 17, 2014
Location: Oral session 2, HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

1. Introduction
2. Why the wavefunction (WF) and relevant momentum-energy operators for antiparticle were overlooked for so long? (Since Konopinski-Mahmaud's paper in 1953 and the experimental data of neutral kaon-antikaon correlation measurement in 1998, even the correct WF can be derived easily from the quantum field theory (QFT)).
3. Is Klein-Gordon (KG) equation imperfect and needs to be rescued by the QFT? In fact, the KG equation and in general, relativistic quantum mechanics (RQM) can be revealed to have an exact discrete symmetry between particle and antiparticle via a specific “space-time (or mass) inversion “. Thus RQM becomes self-consistent and serves as a sound basis for QFT.
4. In QFT, Pauli-Luders ' strong reflection implies that the ordinary space-time cannot be detached from the Fock space. The invariance of field operator and Hamiltonian under the strong reflection is one of cornerstones of QFT and particle physics.
5. What we found in RQM is just the counterpart of strong reflection in QFT, showing a special discrete symmetry in space-time and the equal existence of particle versus antiparticle in nature.
6. Reinterpretation of WF: Following Feshbach-Villars' deep insight, we are able to divide each and every WF in RQM into two parts in confrontation. For example, a fermion's explicit helicityis determined by which one of two hidden left-handed and right-handed spinning fields being in charge. In this way, we may have an interesting understanding on the strange effects predicted by Einstein’s theory of special relativity (SR).
7. In today's physics, why a possible parity violation phenomenon was overlooked since 1956-1957? (A prediction by Shi-Ni since 2002).
8. Why do we believe neutrinos are likely the tachyons? (An equation proposed by Chang-Ni in 2000).
9. Why do we believe in the antigravity between matter and antimatter? (Modified Einstein field equation for gravity, proposed by Ni in 2004).
10. Summary.
(We will try to highlight various paradoxes in physics and the intuitive observation by means of simple pictures on the screens).

Invited Speech: A classical approach to the modeling of quantum mass

Speaker: Prof. Donald C. Chang, Hong Kong University of Science and Technology, China

Time: 10:50-11:30, April 17, 2014

Location: Oral session 2, HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

This work focused on one question: Where does the rest mass of a particle come from? In modern physics, a particle is regarded as the quantum excitation of a field. Then, how can a particle have a rest mass? According to the Standard Model, a particle acquires mass through its interaction with a hypothetical Higgs field. The rest mass is essentially identified from the Klein-Gordon equation of a free particle (through its associated Lagrangian density). It was reported recently that a key feature of this theory (i.e., prediction of Higgs boson) is supported by experiments conducted at LHC. Nevertheless, there are still many questions about the Higgs model. Particularly, the physical meaning of the rest mass m based on the Higgs mechanism would be intrinsically different from energy E or momentum p. This does not seem to be very satisfactory. In this paper, we would like to explore a different approach based on more classical concepts. We think mass should be treated on the same footing as momentum and energy, and the definition of mass should be strictly based on its association with the momentum. By postulating that all particles in nature (including fermions and bosons) are excitation waves of the vacuum medium, we propose a simple wave equation for a free particle. We find that the rest mass of the particle is associated with a “transverse wave number”, and the Klein-Gordon equation can be derived from the general wave equation if one considers only the longitudinal component of the excitation wave. Implications of this model and its comparison with the Higgs model are discussed in this work.
Invited Speech: Atomistic Multiscale Simulation of Amorphous Organic Functional Materials

Speaker: Prof. Alexander A. Bagaturyants, Russian Academy of Sciences, Russia
Time: 8:30-09:10, April 17, 2014
Location: Oral session 3, HuiZhi Room (荟智厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

Atomistic multiscale simulation is applied to modeling amorphous organic functional materials with specific optical or electronic properties. Materials for optical chemical gas sensors and for organic light-emitting devices (OLED's) are considered as examples. The functionality of such materials is provided by constituting molecules that determine their specific functional properties. In the case of sensing devices, these are so-called indicator molecules (IMs) changing their optical response (mostly, luminescence) upon interaction with a target molecule (detected or analyte molecule, AM). The goal of simulation in this case is to predict the optical properties of the entire structure (sensing material) and its response to various AMs. In the case of OLED's, these are light-emitting and electron- or hole-transporting molecules. The goal of simulation here is to predict the main electronic parameters of these molecules that determine the efficiency of a particular OLED. In both cases, the properties of functional molecules strongly depend on their local supramolecular environment, that is, on the microstructure of the amorphous material. Therefore, a multiscale atomistic approach is used, in which molecular dynamics simulations are used to describe the microstructure of the material, and quantum chemical methods are used to calculate the required electronic properties of the functional molecules in the material. Commonly, a statistical treatment is required to obtain the distribution of wanted molecular properties or their averaged values in the real amorphous material. Problems arising at each step of modeling are analyzed, and current approaches to their solution are discussed. The possibilities of modern atomistic simulation methods are considered using specific examples.

Invited Speech: Design and testing of nano-particle embedded affinity membranes for chemical and environmental applications

Speaker: Dr. Paul Chen, National University of Singapore, Singapore
Time: 8:30-09:10, April 17, 2014
Location: Oral session 4, HuiLI Room (荟礼厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract
Due to industrialization, both surface and ground-water has been heavily contaminated. Nano particles have their unique physical and chemical properties and are found to be powerful in water treatment. In this talk, the approaches for fabrication of nano particles will be first presented. Several materials such as adsorbents and membranes can be further used in association of the nano particles in order that the separation of nano particles after use can become easier. A series of research works will be presented to illustrate the application of the technology in water treatment. In particular, the treatment of toxic substances such as arsenic and fluoride will be discussed in details. It has been demonstrated that the materials outperform the commercially available adsorbents, ion exchange resin and membranes. pH plays an important role in the treatment. The presence of competing substances such as heavy metal, anions and organic matters seems to have less effect on the treatment. Several mathematical models have been developed to illustrate the removal mechanisms. Such important issues as toxicity study of nano particles and industrial-scale application of the technology will be presented. Finally, it is demonstrated that the said materials can be recycled and reused through low-cost engineering measures, by which makes the technology more sustainable for water treatment.

Invited Speech: Thermally-Assisted-Occupation Density Functional Theory

Speaker: Dr. Jeng-Da Chai, National Taiwan University, Chinese Taipei
Time: 11:30-12:10, April 17, 2014
Location: Oral session 2, HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Abstract

In this talk, I will briefly describe the formulation of our recently proposed thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] and the density functional approximations to TAO-DFT [J.-D. Chai, J. Chem. Phys. 140, 18A521 (2014)]. In contrast to Kohn-Sham DFT, TAO-DFT is a DFT with fractional orbital occupations given by the Fermi-Dirac distribution (controlled by a fictitious temperature), for the study of large ground-state systems with strong static correlation effects. Relative to TAO-LDA (i.e., the local density approximation to TAO-DFT), TAO-GGAs (i.e., the generalized-gradient approximations to TAO-DFT) are significantly superior for a wide range of applications, such as thermochemistry, kinetics, and reaction energies. For noncovalent interactions, TAO-GGAs with empirical dispersion corrections are shown to yield excellent performance. Due to their computational efficiency for systems with strong static correlation effects, TAO-LDA and TAO-GGAs are applied to study the electronic properties of acenes with different number of linearly fused benzene rings (up to 100), which is very challenging for conventional electronic structure methods. Some interesting results will be presented in this talk.
Part III Oral Sessions

Session 1: Agriculture and Food Engineering (AFE-S)

Session Chair: Prof. Hami Alpas, METU
Invited Speech: Prof. Hossain Uddin Shekhar, University of Dhaka, Bangladesh
Dr. Xiaofeng Sean Yang, Monsanto Company, USA
HuiRen Room (荟仁厅), 3rd floor
08:30-12:30, Thursday Morning, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80185</td>
<td>Water scrubbing for removal of hydrogen sulfide (H2S) in biogas from hog farms</td>
<td>Cheng-Chang Lien</td>
<td>National Chiayi University</td>
</tr>
<tr>
<td>80221</td>
<td>Production of citric acid from dates</td>
<td>khalid alshoaily</td>
<td>Ministry of agriculture and fisheries</td>
</tr>
<tr>
<td>80220</td>
<td>Influence of Physicochemical, Microbiological Counts, and Sensory Properties of Dry-cured Ham in Processed Sulfur-fed Pigs during Storage</td>
<td>Ji-Han Kim</td>
<td>Konkuk University</td>
</tr>
<tr>
<td>80219</td>
<td>Comparison of physicochemical properties of extruded whole and germinated barley</td>
<td>Gi-Hyung Ryu</td>
<td>Kongju National University</td>
</tr>
<tr>
<td>80212</td>
<td>Local role of food producers’ communities for a Global One-Health framework: the experience of translational research in an Italian dairy chain</td>
<td>Chiara Frazzoli</td>
<td>Istituto Superiore di Sanità</td>
</tr>
<tr>
<td>80198</td>
<td>Ohmic heating for tofu making – a pilot study</td>
<td>CHING-HUA TING</td>
<td>National Chiayi University</td>
</tr>
<tr>
<td>80080</td>
<td>Effect of Ultrasonication on Polyphenol oxidase (PPO) in Amasya Apple Juice</td>
<td>Hami Alpas</td>
<td>METU</td>
</tr>
<tr>
<td>80087</td>
<td>Protective Effect of Gingo Biloba Extract on Carbendazim-Induced Hepatotoxicity in Albino Rats</td>
<td>Faiza Mahboub</td>
<td>Umm Al Qura University</td>
</tr>
<tr>
<td>80181</td>
<td>Evaluation of the antioxidant activity of ethanolic extracts of some varieties of onions</td>
<td>Fernando Reina</td>
<td>National Technological University (UTN-FRBA)</td>
</tr>
<tr>
<td>80262</td>
<td>Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Sulla flexuosa in North West region of Morocco</td>
<td>Ezzakkoui Fatima</td>
<td>FST Tanger</td>
</tr>
<tr>
<td>80259</td>
<td>Sensor with intact or modified yeast cells as rapid device for toxicological test of chemicals</td>
<td>Roberto Dragne</td>
<td>National Research Council (CNR)</td>
</tr>
<tr>
<td>80203</td>
<td>Chemical characterisation of the industrial residues of the pineapple (Ananas comosus)</td>
<td>Maria Elena Sanchex Pardo</td>
<td>INSTITUTO POLITECNIO NACIONAL</td>
</tr>
<tr>
<td>80263</td>
<td>Development and Characterization of Antimicrobial Packaging Films</td>
<td>Zinash Assefa</td>
<td>Addis Ababa Science and Technology Institute</td>
</tr>
</tbody>
</table>
Session 2: Mathematics and Physics (AEM-S&CAP-S)-Invited Speech

Session Chair: Prof. Wanyang Dai, Nanjing University, China
Invited Speech: Prof. Wanyang Dai, Nanjing University, China
Prof. Jianbo Gao, Wright State University, USA
Prof. Guang-Jiong NI, Portland State University, USA
Prof. Donald C. Chang, Hong Kong University of Science and Technology, China
Dr. Jeng-Da Chai, National Taiwan University, Chinese Taipei

Time: 08:30-12:30, 3rd floor, Thursday Morning, April 17
Location: HuiXian Room (荟贤厅), 3rd floor, Grand Mercure Baolong Shanghai

Session 3: Material Sciences and Technology I (MST-S)

Session Chair: Prof. Fabio Jose Pinheiro Sousa, Technische Universistaet Kaiserslautern
Invited Speech: Prof. Alexander A. Bagaturyants, Russian Academy of Sciences, Russia

HuiZhi Room (荟智厅), 3rd floor 08:30-12:30, Thursday Morning, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50037</td>
<td>The Extrusion Behavior of AZ31 Mg Alloys by Finite Element Simulation</td>
<td>Ping LI</td>
<td>University of Jinan</td>
</tr>
<tr>
<td>50038</td>
<td>The Extrusion Behavior of Mg Alloys Interpenetrating with Stainless Steel Wire</td>
<td>Ping LI</td>
<td>University of Jinan</td>
</tr>
<tr>
<td>50136</td>
<td>Electrospun Absorbable Polycaprolactone (PCL) Scaffolds for Medical Applications</td>
<td>Yingchu Wang</td>
<td>Donghua University</td>
</tr>
<tr>
<td>50135</td>
<td>EVOLUTION OF WEAR ON THE ABRASIVE TOOL DURING THE POLISHING OF PORCELAIN TILE USING MORPHOLOGICAL SPACE</td>
<td>Fabio Jose Pinheiro Sousa</td>
<td>Technische Universistaet Kaiserslautern</td>
</tr>
<tr>
<td>50152</td>
<td>Preparation and In Vitro Degradation of PDO Intravascular Stents with Braided Structure</td>
<td>CongR Wang</td>
<td>DongHua University</td>
</tr>
<tr>
<td>50151</td>
<td>Effect of H3BO3 coating on the microwave dielectric properties of BZN ceramics</td>
<td>biao jin</td>
<td>Henan University of Urban Construction</td>
</tr>
<tr>
<td>50159</td>
<td>Synthesis and luminescence properties of Ba3Y1 - xEu xB3O9 (0.05 ≤ x ≤ 0.35) under UV excitation</td>
<td>Xiao Xia Li</td>
<td>Jiangxi University of Finance and Economics</td>
</tr>
<tr>
<td>50029</td>
<td>Micro-structural properties of zinc oxide nano-particles synthesized by bio-polymeric templates</td>
<td>Sujata Mandal</td>
<td>CSIR - Central Leather Research Institute</td>
</tr>
<tr>
<td>50174</td>
<td>Photo-thermal Conversion and Stability of Gold and Silver Nanostructures</td>
<td>Yuan Ni</td>
<td>Nanjing University of Aeronautics and Astronautic</td>
</tr>
<tr>
<td>50175</td>
<td>Performance Improvement of Dye-Sensitized Solar Cell by Optimizing TiO2-Photoanode Structure</td>
<td>lifeng liu</td>
<td>Peking University</td>
</tr>
<tr>
<td>50154</td>
<td>PRODUCTION AND CHARACTERIZATION OF GOLD NANOPARTICLES FROM ITAGUNMODI GOLD DEPOSIT</td>
<td>Olasupo Ogundare</td>
<td>Engineering Materials Development Institute Akure</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>50198</td>
<td>Feature recognition of Corrosion Pit for Pre-corroded AA 2524 and Statistical Analysis</td>
<td>zhi li</td>
<td>xiamen university</td>
</tr>
<tr>
<td>50196</td>
<td>Structural and mechanical properties of Poly(ε-caprolactone) Biocomposites Reinforced with Different Silk-fibroin Fabric Structures</td>
<td>Yongmin Wu</td>
<td>Wuhan Textile University</td>
</tr>
<tr>
<td>50220</td>
<td>Improvement in the Low-fire dielectric compositions with middle permittivity for LTCC applications</td>
<td>yonggang zhang</td>
<td>Taiyuan University of Technology</td>
</tr>
<tr>
<td>50075</td>
<td>Calculations of absorbed dose in heavy-ion irradiated phase-change memory cells</td>
<td>Nevena Zdjelarevic</td>
<td>University of Belgrade</td>
</tr>
<tr>
<td>50081</td>
<td>Simulation of ion beam irradiation effects in perovskite oxide memristors</td>
<td>Ivan Knezevic</td>
<td>University of Belgrade</td>
</tr>
<tr>
<td>50246</td>
<td>Study of band structure and optical gain of navel vertical cavity surface emitting lasers</td>
<td>D. H. Zhang</td>
<td>Nanyang Technological University</td>
</tr>
</tbody>
</table>

Session 4: Chemical Engineering (CEN-S)

Session Chair: Prof. Cheng-tung Chou, National Central University
Invited Speech: Dr. Paul Chen, National University of Singapore, Singapore

HuiLI Room (荟礼厅), 3rd floor
08:30-12:30, Thursday Morning, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50065</td>
<td>Application of Vinyl Polymer Reinforced with Knitted Fabric for Producing Curative Garments</td>
<td>Albina Bikbulatova</td>
<td>Ufa State University of Economics and Service</td>
</tr>
<tr>
<td>50105</td>
<td>DFT study of Diels-Alder reaction of 12-N-methylcytisine</td>
<td>Sophia Borisevich</td>
<td>Ufa State University of Economy and Service</td>
</tr>
<tr>
<td>50148</td>
<td>Regeneration of Activated Carbon Using Photo-Oxidation Process</td>
<td>Salam Al-Dawery</td>
<td>University of Nizwa-Sultanate of Oman</td>
</tr>
<tr>
<td>50059</td>
<td>Biocompatible LDH-Alginate Composites for the Adsorption of Naphthalene Anionic Dye AG 120: Influence of Alginate concentration on the Adsorption Characteristics</td>
<td>Sanil Sebastian</td>
<td>CSIR-National Chemical Laboratory</td>
</tr>
<tr>
<td>50146</td>
<td>Rechargeable alkali and alkaline earth metal-air batteries – Potential and challenges</td>
<td>Hua Cheng</td>
<td>Newcastle University</td>
</tr>
<tr>
<td>50183</td>
<td>Thermal Behaviour of Slurry Prepared from Clermont Bituminous Coal and Oil Palm Empty Fruit Bunch Bio-Oil</td>
<td>Hazlin Hamdan</td>
<td>Universiti Teknologi MARA, Malaysia</td>
</tr>
<tr>
<td>50119</td>
<td>Epoxidation of Palm Kernel Oil-based Crude Oleic Acid</td>
<td>Mohd Jumain Jalil</td>
<td>University Technology Mara</td>
</tr>
<tr>
<td>50179</td>
<td>Effect of Pretreatment on Adsorption of Nickel by Oil Palm Mesocarp Fiber</td>
<td>Siti Nor Izuera Nor Azemi</td>
<td>Universiti Teknologi MARA</td>
</tr>
<tr>
<td>50225</td>
<td>Gasification of Oil Palm Biomass to Produce Syngas for Electricity Generation – Cost Benefit Analysis</td>
<td>Nur Hanina Malek</td>
<td>University Technology Of Mara</td>
</tr>
<tr>
<td>50224</td>
<td>Recent Development of Biomass Fast Pyrolysis</td>
<td>Nurul Suhada Ab</td>
<td>Universiti Teknologi Mara</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>50043</td>
<td>Technology and Bio-oil Upgrading: An Overview</td>
<td>Rasid</td>
<td>East China University of Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Kinetics of Hydrogenolysis of Glycerol to Ethylene Glycol over Raney Ni catalyst</td>
<td>Tao Jiang</td>
<td></td>
</tr>
<tr>
<td>50066</td>
<td>Production of high-purity hydrogen and carbon dioxide capture by sorption enhanced WGS reaction process</td>
<td>Cheng-tung Chou</td>
<td>National Central University</td>
</tr>
<tr>
<td>50086</td>
<td>Preparation and Characterization of Fibrous Cellulose/Polypyrrole Nanocomposites</td>
<td>Mahnaz M. Abdi</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>50143</td>
<td>A Study on the inhibitive effects of plant extract and Magnetic fields on 0.5M sulphuric acids corrosion of copper metal.</td>
<td>Kelechukwu</td>
<td>Federal University of Technology</td>
</tr>
<tr>
<td>50186</td>
<td>Molecular Insight into Affinity Interaction between Cibacron Blue and Proteins</td>
<td>Juan Liang</td>
<td>Hamburg University of Technology</td>
</tr>
<tr>
<td>50192</td>
<td>Increasing depth in flow field plates as a tactic against the pressure loss in a Proton Exchange Membrane Fuel Cell</td>
<td>Pablo M. Belchor</td>
<td>UFRGS</td>
</tr>
<tr>
<td>50195</td>
<td>Sulfonate Functionalized Metal Organic Coordination Framework for Cycloaddition of Carbon Dioxide and Styrene Oxide</td>
<td>Dae-Won Park</td>
<td>Pusan National University</td>
</tr>
<tr>
<td>50203</td>
<td>Synthesis of Cyclic Carbonates by Using Quaternized MIL-53-NH2 Catalyst</td>
<td>Youngson Choe</td>
<td>Pusan National University</td>
</tr>
<tr>
<td>50239</td>
<td>Research Of Structure And Properties Of The Filled Polyaniline Compositions Applied For Combings Of Industrial Sewage And Flue Gases</td>
<td>Abdusamad</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td></td>
<td>The Possible Application Of Waste Manufacture Of Nitric Fertilizers At Development Of Composite Polymer Chemical Reagent To Produce Clayless Drilling Mud Is Applied In The Process Of Drilling Oil And</td>
<td>Komila</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td>50053</td>
<td>Polymer Composite Materials Functional Purpose On The Basis Of Polyethylene</td>
<td>Nodira</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td>50124</td>
<td>Spontaneous Polymerization Of The Tetrahydro -1,4-Oxazine With 3- Chlorine -1,2- Epoxypropane</td>
<td>Ulubek Urinov</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td>50061</td>
<td>Development Of Optimal Composition Of Solution Of Polymer Composition In Order To Refine Regenerated Protein Fiber And Researching Its Physical – Chemical Feature</td>
<td>Rasul Davlatov</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td>50214</td>
<td>Research And Development Of New Powder Colorific Compositions Based On Salts Of Polyvalent Metals For Dyeing The Natural And</td>
<td>Shokhista</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rasulova</td>
<td></td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>50101</td>
<td>MODIFIED ANTICORROSIVE POLYMER COATINGS FOR PROTECTION OF METALS FROM CORROSION</td>
<td>Khamza Shodiev</td>
<td>Tashkent State Technical University</td>
</tr>
<tr>
<td>50211</td>
<td>IMPROVEMENT OF TECHNOLOGICAL PROPERTIES OF NATURAL WOOLEN FIBRES BY SOLUTIONS OF A POLYMERIC COMPOSITION</td>
<td>Rasul Davlatov</td>
<td>Tashkent State Technical University</td>
</tr>
</tbody>
</table>

Session 5: Biomedical Engineering and Biotechnology (BEB-S)

Session Chair: Prof. Hassane Oudadesse

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80070</td>
<td>Reducing Radiation Dose By Using Pulse X-Ray Apparatus</td>
<td>Komarskiy Alexander</td>
<td>The Institute of Electrophysics of the Ural Division of the Russian Academy of Science</td>
</tr>
<tr>
<td>80102</td>
<td>Incorporation of carboplatin in microporous granular calcium phosphate biphasic matrix</td>
<td>Cleomar Copatti</td>
<td>Santa Catarina University</td>
</tr>
<tr>
<td>80038</td>
<td>The Prevalence Of Haemoparasitic Infection In Dogs Attending Ecwa Vertinary Clinic, Bukuru, Jos South Local Government Area, Plateau State, Nigeria.</td>
<td>Nonyelu Ifeoma</td>
<td>Delta State University</td>
</tr>
<tr>
<td>80055</td>
<td>In vitro immersion behavior of cold sprayed hydroxyapatite/titanium composite coatings</td>
<td>Xuan Zhou</td>
<td>Kettering University</td>
</tr>
<tr>
<td>80195</td>
<td>Robust Spatial Filters on Three-Class Motor Imagery EEG Data Using Independent Component Analysis</td>
<td>Bangyan Zhou</td>
<td>Anhui University</td>
</tr>
<tr>
<td>80230</td>
<td>Hemodynamic effect of different types of plaques in the left coronary artery models</td>
<td>Zhonghua Sun</td>
<td>Curtin University</td>
</tr>
<tr>
<td>80062</td>
<td>The new bone cement based on magnesium phosphate and αTCP</td>
<td>Aneta Zima</td>
<td>AGH- University of Science and Technology, Krakow, Poland</td>
</tr>
<tr>
<td>80247</td>
<td>Converging parallel plate flow chambers for studies on the effect of the spatial gradient of wall shear stress on endothelial cells</td>
<td>Yiling Lu</td>
<td>University of Derby</td>
</tr>
<tr>
<td>80260</td>
<td>Influence of synthesis parameters on the structure, pore morphology and bioactivity of a new mesoporous glass</td>
<td>Hassane Oudadesse</td>
<td>University of Rennes</td>
</tr>
<tr>
<td>80209</td>
<td>A surface plasmon resonance biosnesor utilizing</td>
<td>How-foo</td>
<td>National Yang Ming</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>80125</td>
<td>Light curable nanocomposite hydrogels from poly-γ-glutamic acid as drug delivery system</td>
<td>Csaba Hegedus</td>
<td>University of Debrecen</td>
</tr>
<tr>
<td>80091</td>
<td>Creep-Recovery and Relaxation Behavior of High Density Polyethylene/ Hydroxyapatite Nano Particles for Bone Substitutes: Effects of Gamma Radiation</td>
<td>Othman Alothman</td>
<td>King Saud University</td>
</tr>
</tbody>
</table>

Session 6: Applied Mathematics (AEM-S)

Session Chair: Pritha Das, BES University

HuiXian Room (荟贤厅), 3rd floor 14:00-18:00, Thursday Afternoon, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80169</td>
<td>Random Integral Equation of the Volterra Type with Applications</td>
<td>HAMDIN ALAFIF</td>
<td>Khartoum University</td>
</tr>
<tr>
<td>80008</td>
<td>Remarks on the Harnak inequality for local-minima of scalar integral functionals with general growth conditions</td>
<td>Tiziano Granucci</td>
<td>Istituto P. Calamandrei</td>
</tr>
<tr>
<td>80096</td>
<td>Limiting Behavior of MHD Flow with Hall Current, due to a Porous Stretching Sheet</td>
<td>FAIZA M.N. EL-FAYEZ</td>
<td>Princess Nora Bint Abdul Rahman University</td>
</tr>
<tr>
<td>80101</td>
<td>Parameter identifiability and parameter estimation of a diesel engine combustion model</td>
<td>Lilianne Denis-Vidal</td>
<td>University of Compiègne</td>
</tr>
<tr>
<td>80176</td>
<td>Framework of Penrose Transforms on DP-Modules to the Electromagnetic Carpet of the Space-Time from the Moduli Stacks Perspective</td>
<td>Francisco Bulnes</td>
<td>TESCHACOMECYT</td>
</tr>
<tr>
<td>80194</td>
<td>The Asymptotic Eigenvalues of First-Order Spectral Differentiation Matrices</td>
<td>Jue Wang</td>
<td>Union College</td>
</tr>
<tr>
<td>80128</td>
<td>Iterative Construction of Common Fixed Point of Quasi-Nonexpansive Mappings in a Convex Metric Space</td>
<td>Hafiz Fukhar-ud-din</td>
<td>King Fahd University of Petroleum and Minerals</td>
</tr>
<tr>
<td>80067</td>
<td>Eigenpairs of a Sylvester-Kac type matrix and a general stochastic model for deposition and evaporation of particles</td>
<td>Carlos Fonseca</td>
<td>Kuwait University</td>
</tr>
<tr>
<td>80196</td>
<td>Is there Chaos In Inflation Data?</td>
<td>Pritha Das</td>
<td>BES University</td>
</tr>
<tr>
<td>80225</td>
<td>Bifurcation and chaos in delayed cellular neural network model</td>
<td>Pritha Das</td>
<td>BES University</td>
</tr>
<tr>
<td>80206</td>
<td>The traffic flow model for road networks</td>
<td>Yaroslav Kholodov</td>
<td>Moscow Institute of Physics and Technology</td>
</tr>
<tr>
<td>80180</td>
<td>Globally Convergent methods for inverse problems in Diffuse Optical Tomography and its applications</td>
<td>Jianzhong Su</td>
<td>University of Texas at Arlington</td>
</tr>
<tr>
<td>80190</td>
<td>Mode Stresses for the Interaction Between Straight and Curved Cracks Problem in Plane Elasticity</td>
<td>Nik Mohd Asri Bin Nik</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>80126</td>
<td>Common Fixed Point Iterations of Generalized Asymptotically Quasi-Nonexpansive Mappings in Hyperbolic Spaces</td>
<td>Abdul Rahim Khan</td>
<td>KFUPM</td>
</tr>
<tr>
<td>80151</td>
<td>Crop water Requirements in Egypt Using Remote Sensing Techniques</td>
<td>Mohammed El-Shirbeny</td>
<td>National Authority for Remote Sensing and Space Sciences (NARSS)</td>
</tr>
</tbody>
</table>

Session 7: Material Sciences and Technology 2 (MST-S)

Session Chair: Dr. Kalman Varga

Vanderbilt University

HuiZhi Room (荟智厅), 3rd floor

14:00-18:00, Thursday Afternoon, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50217</td>
<td>Effect of process on the dielectric properties of BaTiO3-based X9R ceramics</td>
<td>Baolin Zhang</td>
<td>China Academy of Space Technology, 529</td>
</tr>
<tr>
<td>50221</td>
<td>Low temperature sintering of lead-free BaTiO3-based X9R ceramics with Bi2O3 dopant and assisted by LiF-CaF2 Flux Agent</td>
<td>Baolin Zhang</td>
<td>529</td>
</tr>
<tr>
<td>50204</td>
<td>Experimental study on axial tensile strength of low volume fraction of ternary hybrid fiber reinforced concrete</td>
<td>Yuting Zhu</td>
<td>Hubei university of technology</td>
</tr>
<tr>
<td>50001</td>
<td>High efficient photoreduction CO2 with H2O on metal Cu-modified graphitic ordered mesoporous carbon supported TiO2 catalysts under simulated solar</td>
<td>Chengli Zhang</td>
<td>Fudan University</td>
</tr>
<tr>
<td>50014</td>
<td>Electrochemical Corrosion Behavior of Different Graphite shapes Cast Irons in Acidic Solution</td>
<td>zhuhan yu</td>
<td>Xi'an University of Science And Technology</td>
</tr>
<tr>
<td>50015</td>
<td>Facile Preparation and Growth Mechanism of Newly Shaped Gold Nanoplates</td>
<td>Caixia Kan</td>
<td>Nanjing University of AeronAutics and AstronAutics</td>
</tr>
<tr>
<td>50013</td>
<td>Time-dependent Density Functional Simulation of the Interaction of Matter and Electromagnetic Fields</td>
<td>Kalman Varga</td>
<td>Vanderbilt University</td>
</tr>
<tr>
<td>50018</td>
<td>A fluorescence quenching Study for the interaction of 2,6-bis(5-(p-methylphenyl)-1-H-pyrazol-3-yl)pridine with Zn2+ ion</td>
<td>Yan Pi</td>
<td>Hubei Normal University</td>
</tr>
<tr>
<td>50067</td>
<td>Formation and properties of nitrogen rich Ca-Si-(Al)-O-N glasses and Ceramics.</td>
<td>Sharafat Ali</td>
<td>Linæeus University</td>
</tr>
<tr>
<td>50077</td>
<td>Induction Heating And Cell Viability Studies Of Polyl Synthesized Superparamagnetic ZnFe2o4 Nanoparticles For Cancer Hyperthermia Applications</td>
<td>Sandip Sabale</td>
<td>Jayssingpur College</td>
</tr>
<tr>
<td>50112</td>
<td>Eco-Friendly Synthesis Of Catalysts Using Flash Light Irradiation For A Direct Methanol Fuel Cell</td>
<td>Sung-Hyeon Park</td>
<td>Hanyang University</td>
</tr>
<tr>
<td>50114</td>
<td>The Effect Of Poly (N-Vinylpyrrolidone) (PVP) Molecular Weight On Flash Light Sintering Of Copper</td>
<td>Chung-Hyeon Ryu</td>
<td>Hanyang University</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Paper Title</td>
<td>Author</td>
<td>Affiliation</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>50116</td>
<td>Highly Conductive Copper Precursor/Nanoparticle Pattern with Low Porosity via Flash Light Sintering for Printed Electronics</td>
<td>Wan Ho Chung</td>
<td>Hanyang University</td>
</tr>
<tr>
<td>50180</td>
<td>The Change Of Processing Maps In Hot Compression Procession For Ti-6.0Al-7.0Nb Biomedical Titanium Alloy</td>
<td>Yanhui Liu</td>
<td>Northwestern Polytechnical University</td>
</tr>
<tr>
<td>50188</td>
<td>Statistical Analysis of Pit Dimensions for Pre-corroded AA 7075-T6</td>
<td>Yongfang Huang</td>
<td>Xiamen University</td>
</tr>
<tr>
<td>50215</td>
<td>Flexural toughness of hybrid fiber reinforced concrete under notched beam three-point bending</td>
<td>Dongtai Xia</td>
<td>Hubei University of Technology</td>
</tr>
<tr>
<td>50216</td>
<td>Utilisation of Magnetic Intelligent Material for Rotor Systems Control</td>
<td>Katarzyna Majewska</td>
<td>Institute of Fluid-Flow Machinery Polish Academy Of Sciences</td>
</tr>
<tr>
<td>50228</td>
<td>Spiropyran Conjugated Biomaterials as Colorimetric detector</td>
<td>Chan Jin Jeong</td>
<td>Korea National University of Transportation</td>
</tr>
<tr>
<td>50244</td>
<td>Multifunctional glazes by using nanotechnology</td>
<td>Julian Jimenez</td>
<td>Instituto de Cerámica y Vidrio (CSIC)</td>
</tr>
</tbody>
</table>

Session 8: Advances in Physics (CAP-S)

Session Chair:
HuiLI Room (荟礼厅), 3rd floor 14:00-18:00, Thursday Afternoon, April 17

<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80086</td>
<td>Experimental tests on the lifetime asymmetry</td>
<td>Zhi-Qiang Shi</td>
<td>Shaanxi Normal University</td>
</tr>
<tr>
<td>80057</td>
<td>Thermonuclear plasma steady states generation</td>
<td>Fisenko Stanislav</td>
<td>Rusthermosynthesis JSC</td>
</tr>
<tr>
<td>80114</td>
<td>Advanced Concept Ramjet Propulsion System Utilizing In-Situ Positron Antimatter Derived From Ultra-Intense Laser With Fundamental Performance Analysis</td>
<td>Robert LeMoyne</td>
<td>Independent</td>
</tr>
<tr>
<td>80110</td>
<td>Fundamental Architecture and Analysis of an Antimatter Ultra-Intense Laser Derived Pulsed Space Propulsion System</td>
<td>Robert LeMoyne</td>
<td>Independent</td>
</tr>
<tr>
<td>80069</td>
<td>Information Mechanics</td>
<td>John Haller</td>
<td>CCC Information Services</td>
</tr>
<tr>
<td>80167</td>
<td>On Five Independent Phenomena Sharing a Common Cause</td>
<td>Roger Ellman</td>
<td>The-Origin Foundation</td>
</tr>
<tr>
<td>80178</td>
<td>Gravitation in Flat Space-Time and General Relativity</td>
<td>Walter Petry</td>
<td>Universitaet Duesseldorf</td>
</tr>
<tr>
<td>80160</td>
<td>Structure and curvatures of trajectories of a 2D log-gas</td>
<td>Mauricio Pato</td>
<td>Universidade de Sao Paulo, Brazil</td>
</tr>
</tbody>
</table>

SCET2014 16 Conference Program Guide
<table>
<thead>
<tr>
<th>Paper Id</th>
<th>Paper Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80077</td>
<td>Some New Particles Beyond the Standard Model</td>
<td>hesham mansour</td>
<td>Cairo University</td>
</tr>
<tr>
<td>80197</td>
<td>Planck’s constant as adiabatic invariant characterized by Hubble's and cosmological constants.</td>
<td>Anton Lipovka</td>
<td>Sonora University</td>
</tr>
<tr>
<td>80208</td>
<td>Electron Correlation in High Temperature Cuprates</td>
<td>Takashi Yanagisawa</td>
<td>National Institute of Advanced Industrial Science</td>
</tr>
<tr>
<td>80218</td>
<td>Magnetic Properties and Hyperfine Interactions in M-Type BaFe12-2xMoxZnxO19 Hexaferrites</td>
<td>Sami Mahmood</td>
<td>The University of Jordan</td>
</tr>
<tr>
<td>80245</td>
<td>Laser-plasma source of tunable mid-infrared pulses</td>
<td>Nikolay Vvedenskii</td>
<td>University of Nizhny Novgorod</td>
</tr>
<tr>
<td>80211</td>
<td>Gradient-Index Optical Cavity and Quantum Oscillator System</td>
<td>Pi-Gang Luan</td>
<td>National Central University</td>
</tr>
<tr>
<td>80210</td>
<td>Twisted-Dielectric-Rod Arrays as Effective Chiral Photonic Crystal</td>
<td>Zhang XueEr</td>
<td>National Central University</td>
</tr>
<tr>
<td>80239</td>
<td>Maxwell's Equations as the Basis for Model of Atoms</td>
<td>Milan Perkovac</td>
<td>The First Technical School Tesla</td>
</tr>
</tbody>
</table>
Part IV Appendix

Session 1: Agriculture and Food Engineering (AFE-S)

Article ID: 80185
Title: Water scrubbing for removal of hydrogen sulfide (H2S) in biogas from hog farms
Name: Cheng-Chang Lien
Affiliation: National Chiayi University
E-mail: lanjc@mail.nchu.edu.tw

ABSTRACT
Biogas from anaerobic digestion of biological wastes is a renewable energy resource. H2S in biogas may cause corrosion or other damage to engines if it is not removed from the gas before utilization. Because the solubility of H2S in water is higher than methane, water can be used as an adsorbent to remove H2S from biogas. A simple water scrubbing column to reduce the H2S content was designed in this study. The biogas purification process took place in the scrubbing column with water where the gas was continuously fed from the bottom of the column through the diffuser which could produce bubbles. The biogas bubbles and the water can accelerate the reaction inside the column. The water in the column was circulated by means of a pump. H2S content in raw biogas was about 6000 ppm. First, the efficiencies of H2S removal for different biogas flow rate and water level were conducted at 30 and 90 sec. Second, the efficiencies of H2S removal with water recycling system was induce. The results showed that the concentration of H2S in biogas decreased significantly with water level and increased with biogas flow rate through the water scrubbing. It was an effective technique for removing H2S in a short operation time, but absorption capability of water declined rapidly with time. To maintain high absorption rate, water scrubbing after adsorption needed to be replaced or regenerated. The water scrubbing system is a simplest and cheapest method. This work is investigated the feasibility of water scrubbing system and its application to a small hog farm.

Article ID: 80220
Title: Production of citric acid from dates
Name: Khalid Alshoaily
Affiliation: Ministry of agriculture and fisheries
E-mail: kalshoaily@yahoo.com

ABSTRACT
The production of citric acid from dates of the date palm Phoenix dactylifera was studied using a full factorial design with two design variables; Aspergillus niger strain, and starter juice treatment. Analysis of data have shown that mould type and the interaction between Aspergillus niger strain + juice treatment had significant effect (p < 0.05) on the final total acidity. It was also found that all design variables and the interaction between them had significant effect (P ≥ 0.05) on the final pH and Total Soluble Solids. The highest total acidity expressed as citric acid was achieved with a commercial strain of Aspergillus niger, and filtered and centrifuged date juice.

Article ID: 80221
Title: Production of citric acid from dates
Name: Khalid Alshoaily
Affiliation: Ministry of agriculture and fisheries
E-mail: kalshoaily@yahoo.com

ABSTRACT
Study was performed to investigate the changes in physicochemical, microbiological counts and sensory properties of dry-cured ham from sulfur-fed pigs during the drying and ripening period. Moisture content of dry-cured ham from 0.3% sulfur-fed pigs was significantly (p < 0.05) higher than that from non-sulfur fed pigs (CON). Fat content of sulfur-fed pigs was significantly (p < 0.05) lower than that of the control group. The sulfur fed pig groups showed excellent lipid oxidation stability compared to that of CON. Volatile basic nitrogen of sulfur-fed pigs was significantly (p < 0.05) higher than that of CON during the drying and ripening period. Fatty acid and free amino acid concentrations in all groups increased significantly (p < 0.05) during the drying and ripening period. In particular, methionine and glutamic acid in the sulfur-fed groups was significantly higher than those in the CON. The dry cured ham from sulfur-fed pigs showed prolonged storage and improved meat quality.

Article ID: 80219
Title: Comparison of physicochemical properties of extruded whole and germinated barley
Name: Gi-Hyung Ryu
Affiliation: Kongju National University
E-mail: ghryu@kongju.ac.kr

ABSTRACT
Whole and germinated barley flour were extruded under different die temperatures (90 and 130°C), screw speed (150 and 200 rpm) and CO2 injection (0 and 150 mL/min). The physicochemical properties of extruded whole barley
(EWB) were compared to extruded germinated barley (EGB). The EGB contained higher level of protein, reducing sugar and soluble arabinoxylans content while β-glucan and phytic acid content was lower than EWB. EGB significantly decreased SME input resulting in reduction of expansion ratio and water absorption index as compared to EWB but increase of specific length, piece density, lightness and water solubility index (P<0.05). The die temperature is a main effect in overall characteristics, following screw speed played a minor effect. The use of CO2 injection increased the expansion ratios at low die temperature, lightness, WSI and improved microstructure. EGB with CO2 injection appear to be an alternative approach to nutritional snack or ingredient in food product.

Article ID: 80212
Title: Local role of food producers’ communities for a Global One-Health framework: the experience of traslational research in an Italian dairy chain
Name: Chiara Frazzoli
Affiliation: Istituto Superiore di Sanità
E-mail: chiara.frazzoli@iss.it

ABSTRACT
Community is the foundation of public health: the present paper reports the approach and strategy for intervention on the dairy production community developed by the Italian project ALERT (www.alert2015.it), which implements the transfer of technical innovation and technological know-how from public research. Starting from the local role of primary producers, North-South and South-South networking (www.noodlesonlus.org) is needed to share solutions for transnational problems like climatic change, contaminated agro-farming sites and food waste and losses in the era of food crisis. Based on risk analysis, science-society dialogue and global health, the main drivers of this experience of traslational research are One Health, i.e. the web of inter-relationships among environment, farm animals and human health, and sustainable food safety (prevention actions on diet of young women, today, to protect next generation’s health) to increase population life expectancy in good health.

Article ID: 80198
Title: Ohmic heating for tofu making – a pilot study
Name: CHING-HUA TING
Affiliation: National Chiayi University
E-mail: cting@mail.nctu.edu.tw

ABSTRACT
The aim of this study is to explore the relationship between temperature and electrical conductivity of soya milk under ohmic heating in tofu making. The soya milk of 10°Brix was heated to a steady temperature of 90°C. The applied voltage was increased and the temperature rising rate was investigated for adequate heating profiles in tofu making. Experimental results showed that the electrical conductivity of soya milk is proportional to the heating time. The temperature rising rate was increased from 1.46 to 3.82 °C/min as a result of increased voltage. Hence ohmic heating could be an efficient, convenient heating measure in tofu making.

Article ID: 80087
Title: Protective Effect of Gingo Biloba Extract on Carbendazim-Induced Hepatotoxicity in Albino Rats
Name: Faiza Mahboub
Affiliation: Umm Al Qura University
E-mail: faizamahboub_1@hotmail.com

ABSTRACT
Carbendazim is a broad spectrum carbamate fungicide used in the control of various fungal pathogens. The present work studied the effect of carbendazim on the liver of albino rats and the possible protective role of Ginko biloba extract (EGB). Liver of carbendazim -treated animals showed histopathological and...
hypothesis. The histopathological changes include hepatic tissue impairment, cytoplasmic vacuolization of the hepatocytes, and congestion of blood vessels, leucocytic infiltrations and fatty infiltration. Histochemical results showed reduction of carbohydrates and total proteins in hepatic tissues. Moreover, liver function enzymes (ALT, AST) were elevated in sera of carbendazim-treated animals. Co-administration of EGB with Carbendazim improved the histological and histochemical changes observed in animals treated with carbendazim. In addition, EGB treatment leads to a significant decrease in ALT and AST. According to the present results, it is concluded that EGB can improve the hepatotoxicity of carbendazim and this effect may be attributed to antioxidant properties of Ginko biloba extract.

Article ID: 80181
Title: Evaluation of the antioxidant activity of ethanolic extracts of some varieties of onions
Name: Fernando Reina
Affiliation: National Technological University (UTN-FRBA)
E-mail: fernando-reina@hotmail.com

ABSTRACT
The content of polyphenolic substances in commercial onions has been determined. The antioxidant activity of their ethanolic extracts, as well as their effects on the oxidation of edible corn oil during accelerated ageing, was studied. Maceration of taxonomically identified commercial vegetable samples, previously peeled and thinly sliced, was carried out at ambient temperature, out of direct light, with occasional agitation and ultrasound, employing 95% ethyl alcohol as the extraction solvent, allowing them to stand for 7 days. The total polyphenolic contents were determined on the filtrated extracts using the Folin-Ciocalteau method. The antioxidant activity was evaluated on emulsions of ethanolic extracts of onion prepared in edible commercial corn oil, using sorbitan monoleate as emulsifying agent. The peroxide values were analyzed using the iodometric method; oxidation induction times were obtained from the peroxide evolution graphs, using the tangent method. Oil samples emulsified with ethanolic onion extracts showed an extension of the induction period. A 7 day ageing study at 45°C was additionally performed to determine the conjugated dienes on pure commercial corn oil and its emulsions by visible spectrophotometry. The spectral analysis showed an increase of the measured absorbencies in oil samples without additives and no change for the oils emulsified with onion extract. An increasing of diene val-ues was observed for corn oil without additives during ageing; no changes in the value were observed in oils emulsified with onion extracts.

Article ID: 80262
Title: Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Sulla flexuosa in North West region of Morocco
Name: Ezzakkioui Fatima
Affiliation: FST Tanger
E-mail: barrijal@yahoo.fr

ABSTRACT
Sulla (Hedysarum flexuosum L., syn. Sulla flexuosa) originating from the western Mediterranean region and North Africa. In Morocco, the species grows on marl and limestone clay substrates and it is represented by small populations in areas of Tangier, Tetouan, Asilah, ksar sghir and Ouazzane. But these phyto genetic resources are currently damaged by severe genetic erosion due to overgrazing, irregular rainfall and reduction of rangeland. Phenotypic and genetic diversity of 70 strains, isolated from root nodules of Sulla. Flexuosa grow in North West region of Morocco, were studied using both phenotypic and genetic techniques. The phenotypic tests, (growth rate, tolerance to salinity, pH, temperature, resistance to antibiotics and metals ...), revealed that most of strains are belonging to rhizobia and genetic tests clustered all strains into 30 different profiles. Results of 16S rRNA sequencing revealed that Hedysarum rhizobia were phylogenetically related to Rhizobium sullae strain IS 123T in 17 groups. All rhizobial strains identified in this study produced effective symbiosis with their original host.

Article ID: 80259
Title: Sensor with intact or modified yeast cells as rapid device for toxicological test of chemicals
Name: Roberto Dragone
Affiliation: National Research Council (CNR)
E-mail: roberto.dragone@uniroma1.it

ABSTRACT
Aerobic catabolism of S. cerevisiae (cell respiration) is a rapid, cost-effective, and reproducible toxicological endpoint of the whole cells biosensor. To increase the signal intensity, a protocol for the immobilization and modification of the yeast cells is described. In particular, the enzymatic treatment of the immobilized yeast cells allows removing the cell wall and obtaining structurally modified cells namely spheroplasts. Both immobilization and exposure of sensitive cells like spheroplasts confirmed to improve the method's sensitivity vs. the chemicals. The present paper reports the test of different chemicals (including Mercury and wood preservative like Tanalith) present in consumers' products, performed both by sensor with intact and modified whole cells formation (1.21 g/L).
of the pineapple (Ananas comosus)

Name: MARIA ELENA SANCHEZ PARDO
Affiliation: INSTITUTO POLITECNIO NACIONAL
E-mail: roberto.dragone@uniroma1.it

ABSTRACT
In Mexico pineapple processing produces industrial residues with a high concentration of dietary fibre. The aim of this study was quantify the constituents of the fibrous residues from the industrial processing of pineapples which exhibited low concentrations of lignin.

Article ID: 80263
Title: Development and Characterization of Antimicrobial Packaging Films
Name: Zinash Assefa
Affiliation: Addis Ababa Science and Technology Institute
E-mail: zinasha8@gmail.com

ABSTRACT
The purpose of this work was to develop and study the effect of bioactive component towards the inhibition of microbial activities of films; aiming to assess their performance in employing for antimicrobial packaging film. In order to achieve appropriate inhibition effect of the antimicrobial agent, the structure of the films was changed from a highly asymmetric and porous to the dense by the modulation of the composition of the initial casting solution. The results on inhibition effect of starch-based films prepared from 90-100% (w/w) starch and 0-10% (w/w) bioactive component (saponin) revealed antimicrobial activity in a growth of bacteria (Escherichia coli, Salmonella typhi and Entrobacter erogenous). An increase in saponins concentration in the casting solution decreased the growth of microorganisms and the inhibition activities of the films increased. Results on moisture content, transparency, swelling, solubility and mechanical properties of the films at different concentrations of bioactive component and levels of film thickness revealed significance differences at p<0.05. The film with 10% saponins concentration showed better inhibition effect in a growth of Salmonella typhi, E. erogenous and E. coli for 0.02 and 0.04mm film thickness. The maximum antimicrobial activities and tensile strength of the films increased with an increase in an amount of the bioactive component in the casting solution. In conclusion, this study confirms that the saponins extracted from haricot bean seeds and incorporated in the films had antibacterial activity on pathogenic bacteria. The films may be used for food packaging that are extremely vulnerable to microbial growth or directly used as a surface coating on perishable fruits and vegetables consecutively to augment their microbial safety and extend shelf stability of food products. Undoubtedly, this area of research holds considerable potential on food delivery systems

Session 3: Material Sciences and Technology I (MST-S)

Article ID: 50037
Title: The Extrusion Behavior of AZ31 Mg Alloys by Finite Element Simulation
Name: Ping LI
Affiliation: University of Jinan
E-mail: ss_lip@ujn.edu.cn

ABSTRACT
The three-dimensional finite element (FE) numerical simulation of extrusion forming of AZ31 matrix magnesium alloy was analyzed in four extrusion velocities. The flow pattern and the influence of extrusion velocity for the temperature, the distribution of effective stress and strain of composites were analyzed. The results showed that, when the extrusion velocity increased from 1.5 mm/s to 4.5 mm/s, the heat flux under steady extrusion state would change from -2.77e+004 (W/m²) to 1.14e+005 (W/m²), meanwhile the effective stress and strain increased at first and then decreased, and the average effective strain and stress value were smallest when v = 4.5 mm/s. It showed that along with the increase of the extrusion velocity, the rise degree of the temperature increased and the distribution of the effective stress and strain tended to be more evenly. Finally, the best extrusion technical parameters of AZ31 magnesium alloy were determined, that was the extrusion velocity was equal to 4.5 mm/s when extrusion ratio was 25 and extrusion temperature was 350 oC.

Article ID: 50038
Title: The Extrusion Behavior of Mg Alloys Interpenetrating with Stainless Steel Wire
Name: Ping LI
Affiliation: University of Jinan
E-mail: ss_lip@ujn.edu.cn

ABSTRACT
The interpenetrating magnesium composites reinforced by three-dimensional braided stainless steel wire reinforcement were fabricated. And, the deformation behavior of materials was analyzed in four extrusion velocities by DEFORM-3D software. The results show that with the increases of extrusion velocities, the equivalent stress values exhibit a gradually increasing and then decreasing trend. Owing to the effect of three dimensional reinforcement, the basal plane orientation occur tilt. And, the microstructure turns refined.
The fabrication of the scaffold plays a crucial role in tissue engineering for its unique structure which can mimic the structure and biological functions of the natural extracellular matrix (ECM). This study discusses the effects of electrospinning parameters, such as applied voltage, tip-collector distance, DMF content percentage and polymer concentration, on the porosity and the surface area of electrospun fibrous scaffolds. The results show that the fiber diameter of electrospun scaffold can be increased with the lower applied voltage, the shorter the tip-collector distance, the smaller DMF content percentage or the higher the polymer concentration. The PCL electrospun scaffolds have high porosity ranging from 85.5 to 92.4%. Furthermore, the surface area to volume ratio exhibits a clear relationship with the fiber diameter. The surface area can be improved through decreasing the diameter of nanofibers.

ABSTRACT

Costs with the polishing process represent nearly a third of what customers pay for polished floor tiles. This is in part due to the high consumption of cemented-matrix abrasive tools, whose demand is about half kilogram per square meter final product. The present study addresses the wear of such abrasive tools, colloquially known as fickert, in the industrial polishing process of ceramic tiles. The focus was set on the evolution of the fickert surface during polishing. The fickert topography was periodically measured by both optical and confocal microscopy. The abrasive tool was submitted to a sequence of ten polishing steps of one second each. All variations were quantitatively characterized and were successfully represented by means of the morphological space. Such space is in turn composed by two statistical parameters: the skewness and kurtosis, both based on the distribution of heights collected from roughness profiles taken along the fickert active surface. The experimental points showed a linear relationship between skewness and kurtosis, in a very good accordance with the behavior expected for typical abrasive wear.

ABSTRACT

In this paper, in vitro degradation behaviors of the PDO monofilaments and the stents were studied. The mechanical properties, morphology observation and Differential Scanning Calorimeter (DSC) of PDO monofilaments were determined, as well as the compression strength of the stents. The experimental results showed that the PDO monofilaments contained half of its original strength after 6 weeks degradation and lost its strength in the 10th week. DSC outcomes showed that the crystalline regions of PDO haven’t been hydrolyzed after 16 weeks of degradation. The stents demonstrated good compression behaviors for 12 weeks and therefore can be utilized in short-term application.

ABSTRACT

Single phase of Ba3Y1 - xEuxB3O9 (0.05 ≤ x ≤ 0.35) samples was prepared by the solid state reaction. B2O3 was introduced by liquid coating technology with H3BO3 solution in the BZN ceramic specimen to reduce its sintering temperature. The sintering behavior, phase composition and dielectric properties of ceramics were investigated by X-ray diffraction, scanning electron microscopy and vector network analyzer. The (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 ceramic composite could be sintered well at 900°C for 3h when 0.9M/l H3BO3 was added and showed good dielectric properties of εr=150,Q×f=228,τf=362ppm/°C.

ABSTRACT

Single phase of Ba3Y1 - xEuxB3O9 (0.05 ≤ x ≤ 0.35) samples was prepared by the solid state reaction. The crystal structure, the surface, the particle size and luminescence properties were characterized by X-ray diffractometer, scanning electron microscopy and spectrophotometer. The results showed that the obtained samples with the particle size from 0.3 to 1.5 um were hexagonal structure. Monitored by 592 nm emission, the
excitation spectra of Ba$_3$Y$_{1-x}$Eu$_x$B$_3$O$_9$ were dominated by the charge transfer band of O$_2^-$→Eu$^{3+}$ peaking at about 259 nm until x = 0.15; the transition from 7F0 to 5L6 level of Eu$^{3+}$ at about 395 nm was maximum after x = 0.15. The strongest emission peak due to the 5D0→7F1 transition of Eu$^{3+}$ was all located at about 592 nm in the emission spectra of Ba$_3$Y$_{1-x}$Eu$_x$B$_3$O$_9$, and the maximum emission was obtained at x = 0.15 and 0.3 under 254 and 395 nm excitation, respectively. The excitation process under the two excitation energies was analyzed. It indicated that only the centrosymmetric lattices could be excited under 254 nm excitation; both the centrosymmetric and noncentrosymmetric positions could be excited by 395 nm, accordingly, the ratio of the red emission (5D0→7F2) to the orange one (5D0→7F1) increased, leading to a better chromaticity of the phosphors.

Article ID: 50029
Title: Micro-structural properties of zinc oxide nano-particles synthesized by bio-polymeric templates
Name: Sujata Mandal
Affiliation: CSIR - Central Leather Research Institute
E-mail: sujatamandal@rediffmail.com

ABSTRACT
Zinc and iron oxide nano-particles were synthesized using natural bio-polymeric templates viz. cellulose and sodium alginate. Cellulose fibres from different sources viz. filter- and blot- papers, were used as templates for this purpose. The synthesized Zinc oxide nano-particles were characterized by X-ray diffraction (XRD), fourier transform infra-red spectra (FT-IR), UV-Visible spectrophotomer (UV-Vis) and scanning electron microscopic (SEM) studies. XRD studied confirmed the formation of highly crystalline hexagonal wurzite phase of ZnO in all the synthesized nano-particles. The average crystallite sizes of the nanoparticles obtained using different templates, were well below 50 nm. Characteristics of the zinc oxide nano-particles obtained by template-based techniques were compared with those obtained by co-precipitation technique. Influence of various templates on the characteristics of metal oxide nano-particles was studied.

Article ID: 50174
Title: Photo-thermal Conversion and Stability of Gold and Silver Nanostructures
Name: Yuan Ni
Affiliation: Nanjing University of Aeronautics and Astronautic
E-mail: niyuan119@163.com

ABSTRACT
Gold and silver nanostructures (such as Au nanorods and Ag nanoplates) exhibit strong and tunable surface plasmon resonance in the near-infrared region (NIR). Under a certain NIR laser irradiation, noble metal nanostructures achieve a high photo-thermal effect, which would be useful in the therapy. In this work, Au nanorods with longitude surface plasmon resonance (SPRL) shifting in the region of 650~1100 nm were synthesized by a “seed” method. Ag nanoplates and nanocubes with SPR located in the region of 650~850 nm were produced by a hydrothermal method. Through adjusting laser power and irradiating time, the photo-thermal conversions of these nanostructures were studied under NIR laser irradiation. Under low power laser (808 nm, 1W) irradiation, the shape of the Au nanorods are stable and the temperature of colloid increase from room temperature to ~57°C. However, Au nanorods undergo deformation from rod to spherical particle under irradiation of high power (808 nm laser; 6W; 1064nm laser, 7W), resulting in the disappearance of SPRL. Morphology evolutions and photo-thermal conversion of Ag nanostructures were also studied. Ag nanostructures have a lower photo-thermal conversion compared with that of Au nanorods colloid. Snipping and dendrite can be observed for Ag nanoplates after irradiating, while Ag nanocubes have no obvious shape change.
gold deposit in Atakumosa West LGA in the State of Osun Nigeria. The gold ore was weighed and physically processed by hand picking the gangues and other physical impurities. It was then fractionated into different sizes with the aid of sieves of sizes ranging from 0.1mm and 3.5 mm. The production of gold nanoparticles was achieved using the top down technique through mechanical attrition (ball milling) of the physically processed gold ore. The gold nanoparticles obtained were subsequently characterized using Scanning Electron Microscopy (SEM) with Energy dispersive-X ray (EDX) attachment and X-Ray Diffraction (XRD).

Article ID: 50198
Title: Feature recognition of Corrosion Pit for Pre-corroded AA 2524 and Statistical Analysis
Name: zhi li
Affiliation: Xiamen University
E-mail: 350384413@qq.com

ABSTRACT
Corrosion morphology image is one of the most important features for the evaluation of the corrosion damage of materials. By using white light confocal profiler, the corrosion morphologies of AA2524 aluminum alloy specimen are obtained after full immersion to experimental 3.5% salt solution for different time. Through digital image processing, typical corrosion morphology characteristics are extracted, such as the fractal dimension, the depth of pit, the area of pit. By extended 3D box-dimension method, the fractal dimensions of the corrosion surface under immersing time of 24 and 120 hours are determined. The statistical analyses show that the corrosion areas and the characterization parameters ab/2c2 obey Gumma distribution, and the corrosion depth obeys Gumbel, normal, Weibul and log-normal distributions.

Article ID: 50196
Title: Structural and mechanical properties of Poly(e-caprolactone) Biocomposites Reinforced with Different Silk-fibroin Fabric Structures
Name: Yongmin Wu
Affiliation: Wuhan Textile University
E-mail: liuxin011184@163.com

ABSTRACT
To develop novel biocomposites, three different silk-fibroin fabrics (plain woven fabric, plain weft-knit fabric and non-woven fabric) were, respectively, blended with poly(e-caprolactone) (PCL) by a solution blending method. The effects of various fabric structures on the mechanical and microstructure properties of silk-fibroin fabric reinforced (SF-fabric-reinforced) PCL biocomposites were investigated. It was obvious that the breaking strength and elongation of SF-fabric-reinforced PCL biocomposites decreased while the Young’s modulus increased. Scanning Electron Microscopy (SEM) photographs showed that silk-fibroin fabrics were well bonded with PCL matrix. From Wide-Angle X-ray Diffraction (WXRD) analysis, plain woven and plain weft-knit fabrics showed higher ability to increase the crystallinity of PCL matrix compared with non-woven fabric.

Article ID: 50075
Title: Calculations of absorbed dose in heavy-ion irradiated phase-change memory cells
Name: Nevena Zdjelarevic
Affiliation: University of Belgrade
E-mail: nena_flo@hotmail.com

ABSTRACT
Heavy ion irradiation on phase change memory cell was conducted using Monte Carlo simulations. Absorbed dose in the whole memory cell, as well as in its active layer was assessed. Phase change memory cell was modeled as a sandwiched structure of two TiW electrodes and ZnS-SiO$_2$ films as insulators surrounding the active region. The most commonly used phase change material, Ge$_2$Sb$_2$Te$_5$, was used as active layer of the cell.
Ionization effects of heavy ion irradiation were investigated for various thicknesses of phase change layer and different ion energies.

Article ID: 50081
Title: Simulation of ion beam irradiation effects in perovskite oxide memristors
Name: Ivan Knezevic
Affiliation: University of Belgrade
E-mail: ivandknezevic@yahoo.com

ABSTRACT
Radiation effects of ion beams in perovskite oxide memristors are analyzed and linked to absorbed dose values, calculated from simulations of ion transport. Several ion species were used in simulations, chosen to represent certain commonly encountered radiation environments. Results indicate that considerable formation of oxygen ion-oxygen vacancy pairs, as well as advent of displaced rare earth and alkaline atoms, is to be expected. Oxygen vacancies can lead to a decrease or increase of active layer resistance, depending on applied voltage polarity. The loss of vacancies from the device is bound to impair the performance of the memristor. Calculated absorbed dose values in the memristor for various incident ion beams are typically on the order of several kGy.

Session 4: Chemical Engineering (CEN-S)

Article ID: 50065
Title: Application of Vinyl Polymer Reinforced with Knitted Fabric for Producing Curative Garments
Name: Albina Bikbulatova
Affiliation: Ufa State University of Economics and Service
E-mail: albina-bikbulatova@yandex.ru

ABSTRACT
Today polymeric composite material (PCM) is widely used almost in all industries. Polymer reinforced with fibers or knitted fabric changes its physical and mechanical properties: reinforcement increases its strength, wear resistance, etc. However most often scientists' research in the sphere of reinforced PCM is directed towards developing structural plastics used in construction projects, machine building, and less often for meeting people's needs. The authors suggest using the world experience in developing reinforced PCM for creating innovative curative garments: elegant and ergonomic ones. To develop such cloth polymers and knitted fabrics underwent a testing on their safety and to what extent they meet the criteria (rigidity, decreasing amount of possible permanent deformations, providing the proper level of compression). Technology of applying polymeric composition onto the basis has been developed. The analysis of the properties of the composites obtained made it possible to draw a conclusion that using these composites in producing curative garments will allow to take preventive measures against diseases of musculoskeletal system and to provide their treatment. The additional effect of the material is its aesthetic characteristics which makes producing functional garments (also for disabled people) possible.

Article ID: 50246
Title: Study of band structure and optical gain of navel vertical cavity surface emitting lasers
Name: D. H. Zhang
Affiliation: Nanyang Technological University
E-mail: EDHZHANG@ntu.edu.sg

ABSTRACT
The vertical-cavity surface-emitting lasers (VCSELs) are more attractive for their advantages and properties, and high-index-contrast subwavelength grating (HCG) can be applied to replace top DBR to fabricate VCSELs with better performance. Before fabrication the HCG VCSELs devices, the active region of the wafer should be studied and investigated. The electronic structures of In0.17Ga0.83As/GaAs0.92P0.08 QWs which are embedded in the active region of 980nm-emission VCSELs are investigated using the 8-band k.p model. The dispersion and the wave functions of conduction bands and valence bands have indicated that the effective overlapping and interactions between electrons and holes can occur in QWs to produce photons efficiently. The spontaneous emission rate and optical gain of TE and TM modes show the emission wavelength is close to 980nm. The simulated results are verified by the PL measurements which show the peak at 968-969 nm. So the simulated and the measured results are consistent to verify the quality and emission wavelength of the wafer.
reaction between 12-N-methylcytisine and a number of diyneophiles is consistent with the experimental data indicating the highest reactivity of N-phenylmaleimide. This is due to a number of factors: high chemical potential, the hardness differing little from that of the diene and commensurable activation energies of the forward and reverse Diels-Alder reactions, i.e., thermodynamic stability of the resulting adducts.

Article ID: 50148
Title: Regeneration of Activated Carbon Using Photo-Oxidation Process
Name: Salam Al-Dawery
Affiliation: University of Nizwa-Sultanate of Oman
E-mail: salam@unizwa.edu.om

ABSTRACT
Activated carbon has been used as an adsorbent for centuries. For purpose of regeneration, advanced oxidation processes is suggested, this approach could be viable from the economic and environmental point of view, and appears as an alternative to the many of inefficient single-step processes actually applied for the regeneration process. The results showed that the Titanium dioxide can easily regenerate the AC by oxidizing the organic compounds adsorbed on the surface of AC. The increase of UV light intensity has a positive effect on the adsorption capacity. However, the increase of TiO2 concentrations have a small negative effect on the adsorption capacity of the AC.

Article ID: 50059
Title: Biocompatible LDH-Alginate Composites for the Adsorption of Naphthalene Anionic Dye AG 120: Influence of Alginate concentration on the Adsorption Characteristics
Name: Sanil Sebastian
Affiliation: CSIR-National Chemical Laboratory
E-mail: sebastian.sanil@gmail.com

ABSTRACT
Layered double hydroxide (MgAl LDH) and its composites containing different quantities of sodium alginate were synthesized. The adsorption characteristics of these materials were evaluated for the adsorption of Acid Blue 120 (AB 120). The adsorption capacity of the composites for the dye was higher than that of pristine LDH. The adsorption capacity varied with alginate concentration and was the highest when the alginate concentration was 5.9 wt%. The maximum adsorption capacity of the composite enhanced by 40%, compared to pristine MgAl LDH. The rate of adsorption of the dye on the composites was also higher than that of pristine MgAl LDH up to an alginate concentration of 11%. The results reveal that LDH composites are more efficient adsorbents compared to pure LDH. Sodium alginate, being a biopolymer can also improve the biocompatibility of the LDH for biological applications.

Article ID: 50146
Title: Rechargeable alkali and alkaline earth metal-air batteries – Potential and challenges
Name: Hua Cheng
Affiliation: Newcastle University
E-mail: hua.cheng@ncl.ac.uk

ABSTRACT
In order to resolve environmental and sustainable energy concerns, significant efforts are required to find ways to minimise the use of fossil fuels and to shift to renewable energy resources such as solar, wind, and geothermal power generation. The key to success lies in developing reliable large scale high power energy storage devices. The lithium–air battery has been suggested as one candidate because of its exceptionally high energy storage capacity. Non-aqueous metal-air batteries utilising alkali and alkaline earth metal anodes also offer great gains in energy density over the state-of-the-art Li-ion battery. They are also unique power sources because the cathode active material (oxygen) does not have to be stored in the battery but can be accessed from the atmosphere. Moreover, alkali and alkaline earth elements are much more abundant than lithium and therefore would offer a more sustainable energy storage solution for even beyond the long-term. This work is to enable the uptake of this technology by fully analysing its principle and by exploring the application of nano-structured catalytic cathode materials. The potential of alkali and alkaline earth metal-air batteries will be demonstrated by their electrochemical cycling performance and will be compared with the lithium-air battery. The challenging issues will be discussed according to experimental observations.

Article ID: 50183
Title: Thermal Behaviour of Slurry Prepared from Clermont Bituminous Coal and Oil Palm Empty Fruit Bunch Bio-Oil
Name: Hazlin Hamdan
Affiliation: Universiti Teknologi MARA, Malaysia
E-mail: hazlin.hamdan@yahoo.com

ABSTRACT
Investigation on the pyrolysis behaviour of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0; 70:30; 60:40; 0:100) were conducted using a Thermogravimetric Analyzer (TGA). The selected coal sample was Clermont bituminous coal (Australia), while Empty Fruit Bunch (EFB) was used as source of bio-oil that was thermally converted by means of pyrolysis. Thermal degradation of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under...
nickel phase on the oil palm mesocarp fiber. From the XRD analysis was done in order to proof the existence of effect of initial nickel concentration is also determined. concentration on nickel removal. Other than pretreatment, concentration were examined to determine the effect of mesocarp fiber is one of the objectives. Varities of NaOH HCl pretreatment on the nickel removal by oil palm aqueous solution is discussed. The effect of NaOH and mesocarp fiber as biosorbent for nickel removal from epoxidation results were based on complete conversion oxirane, rate of epoxidation and stability of the oxirane. It was found that a maximum relative conversion oxirane (RCO) of epoxide is 88% at optimal condition.

ABSTRACT

Most vegetable oils have high content of unsaturated bond and can be converted into epoxidized fatty acids. These days, epoxidized vegetable oils are great concern as they are obtained from sustainable, renewable natural resources and are environmental friendly. The epoxidation of palm oleic acid was carried out by using in situ generated performic acid (HCOOOH) to produce epoxidized oleic acid. The degree of temperature, the molar ratio of formic acid or hydrogen peroxide and types of catalyst was considered. Epoxidation results were attached on the oil palm mesocarp fiber with crystalline size between 28-52 nm. in higher nickel adsorption compared with the treatment using HCl and the nickel nitrate phases was successfully attached on the oil palm mesocarp fiber with crystalline size between 28-52 nm.

Article ID: 50119
Title: Epoxidation of Palm Kernel Oil-based Crude Oleic Acid
Name: Mohd Jumain Jalil
Affiliation: University Technology Mara
E-mail: jumain.jalil@gmail.com

ABSTRACT

In this study, the usage of abundantly available oil palm mesocarp fiber as biosorbent for nickel removal from aqueous solution is discussed. The effect of NaOH and HCl pretreatment on the nickel removal by oil palm mesocarp fiber is one of the objectives. Varieties of NaOH concentration were examined to determine the effect of concentration on nickel removal. Other than pretreatment, effect of initial nickel concentration is also determined. XRD analysis was done in order to proof the existence of nickel phase on the oil palm mesocarp fiber. From the result, oil palm mesocarp fiber treated with NaOH results in higher nickel adsorption compared with the treatment using HCl and the nickel nitrate phases was successfully attached on the oil palm mesocarp fiber with crystalline size between 28-52 nm.

Article ID: 50179
Title: Effect of Pretreatment on Adsorption of Nickel by Oil Palm Mesocarp Fiber
Name: Siti Nor Izuera Nor Azemi
Affiliation: Universiti Technologi MARA
E-mail: izueraazemi@gmail.com

ABSTRACT

Fossil fuel burning for energy production creates two major issues: the global warming effect and the weak energy security. These problems can be minimized by utilizing renewable energy sources such as biomass. In order to assess the potential contribution of these technologies to the future energy security and sustainable development, a thorough evaluation of gasification technology towards economic aspects is required. This study aims to determine whether the syngas production from EFB gasification for electricity generation is viable in terms of cost-benefit analysis by evaluating the economic aspects of these technologies.

Article ID: 50224
Title: Recent Development of Biomass Fast Pyrolysis Technology and Bio-oil Upgrading: An Overview
Name: Nur Hanina Malek
Affiliation: University Technology Of Mara
E-mail: hanina_malek@yahoo.com

ABSTRACT

The increasing demand of energy has led to the development of renewable energy in order to mitigate the dependency of fossil fuels. Fast pyrolysis of biomass is one of the most anticipated renewable energy technologies since it has a huge potential to become the efficient, environmentally sustainable, and cost effective technology for energy. Fast pyrolysis process produces liquid bio-oil as a main product, along with solid char and combustible gas. Bio-oil can be utilized for heat and power generation as well as it can be used as a feedstock for pure chemicals production. Over the last decades, numerous researches have been conducted in order to develop the process in terms of reactor design and process optimization in order to achieve the high yield of liquid with high organics and less water content. The aim of this review is to provide the state-of-the-art on fast pyrolysis of biomass with some suggestions presented on upgrading the bio-oil. Based on the recent reactor configurations, current status of biomass fast pyrolysis in commercial scale around the world, the fuel and chemical characteristic of bio-oil compared to the conventional fossil fuels, and the potential application of bio-oil in the future, some recommendations are proposed.
ABSTRACT
The rapid development of biodiesel production yields large amount of glycerol as a by-product. It is a resource-utilization efficient and biological technical process to employ hydrogenolysis of glycerol aqueous solution for ethylene glycol generation. In this work, Raney Ni catalyst was prepared through conventional means and tested for hydrogenolysis of glycerol to produce ethylene glycol. The experiments were performed by varying the reaction time and rotate speed at a hydrogen pressure of 6.0-10.0MPa over a temperature range of 453-493K using a batch reactor. The effect of reaction conditions on the conversion of glycerol and the product distribution were also investigated and discussed. The results indicated that with the increase of reaction time the conversion of glycerol and the selectivity of 1,2-PDO tended to rise but the concentration of ethylene glycol decreased after reaching a peak point. The conversion of glycerol reached as much as 100% and the selectivity of ethylene glycol reached a maximum of 40%. Based on the experimental data, the reaction kinetics was studied and the parameters involved a two-site Langmuir-Hinshelwood model were acquired by the parameter estimation method. In the end, residual error distribution and statistic test showed that the obtained kinetic model was suitable and acceptable.

ABSTRACT
Global warming has become more and more serious, which is caused by greenhouse gases. Cutting down the emission of CO2 has already become one of the major research target in the world. This study is numerically investigating Thermal Swing Sorption Enhanced Reaction Process on water gas shift (WGS) reaction by Na2O-promoted alumina. According to Le Chatelier’s law, the forward reaction rates and conversion can be increased by removing some products selected. Therefore, this concept can be used to generate product of high-purity hydrogen. The purified H2 can be sent to gas turbine for generating electrical power or can be used for other energy source. Carbon dioxide can also be recovered and sequestrated to reduce greenhouse gas effects. The method of lines is utilized in simulation, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state. In this study, we first simulate breakthrough curve of Na2O-promoted alumina cited from literatures to prove the accuracy of simulation program. The optimal operating conditions of the WGS TSA (temperature swing adsorption) single-bed six-process is obtained by varying operating variables, such as feed time and rinse time. Furthermore, WGS TSA single-bed six-process could achieve 99.89% purity of H2 (dry-basis) as the top product and 90.95% purity and 98.22% recovery of CO2 (dry-basis) as the bottom product.
of MFC leads to enhancement in thermal stability of pure PPy.

Article ID: 50125
Title: Synthesis of Hydrophilic Coating Solution and Its Application on Transparent Polymer Films
Name: Je Hun Kim
Affiliation: Intech Nano-Materials Co., Ltd.
E-mail: kjh@intech-nm.com

ABSTRACT
Nowadays, a wide range of self-cleaning building materials such as outer wall tile or glass, or colloidal solutions for the fabrication of hydrophilic coatings are already commercially available. However, some practical limitations still restrict their widespread use in the building sector due to difficulty of their replacements. In this study, we synthesized the hydrophilic coating solutions using various organic and inorganic sources, which can be applicable to the flexible polymer film. Such hydrophilic layer coated polymer film seems to be attached and removable more easily. Considering different intrinsic properties of the organic film substrate and inorganic coating solution, this study was focused to get the reasonable adhesion property between flexible substrate and coated layer and the hardening temperature below 110 oC by controlling linear and organic - inorganic polymerization of binder and additive. Thin films were coated on the flexible polymer film by a roll to roll process. Their characteristics were investigated in terms of hydrophilicity, adhesion and transparency. [Acknowledgement] This work (Grants No. C0124327) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2013.

Article ID: 50143
Title: A Study on the inhibitive effects of plant extract and Magnetic fields on 0.5M sulphuric acids corrosion of copper metal.
Name: Kelechukwu Okeoma
Affiliation: Federal University of Technology
E-mail: bierechi@yahoo.com

ABSTRACT
The inhibitive effects of Newboldia Laevis and static magnetic fields on 0.5M sulphuric acid corrosion of copper metal have been undertaken using gravimetric techniques. Fifteen copper coupons are exposed to the corroding media with and without the plant extract, and the magnetic fields for two hours. The magnetic fields were produced from laboratory made electromagnet, while different concentrations of the extract were gotten by reflux techniques. It is found that both the plant extract and the magnetic fields resulted to inhibition of the corrosion process. The inhibition efficiency increased with increase in concentration of the extract, hence increase in activation energy. Increase in temperature caused a decrease in the inhibition efficiency, this possibly suggest physical adsorption. The magnetic field caused a drastic decrease in corrosion rate of the inhibited samples, while it has very small effects on the corrosion of uninhibited samples. This result suggests that the particles of the plant extract may have aligned themselves so as to cover corroding areas of the metal. This suggests for further investigation into the morphology of the adsorbed surface. And also may form basis to identify the purity of copper metal.

Article ID: 50186
Title: Molecular Insight into Affinity Interaction between Cibacron Blue and Proteins
Name: Juan Liang
Affiliation: Hamburg University of Technology
E-mail: juan.liang@tu-harburg.de

ABSTRACT
Dye-ligand affinity chromatography has been widely utilized for protein separation and purification. Immobilized textile trazine dyes, particularly Cibacron blue have been used as affinity chromatography tools for a long time. Cibacron blue is characterized by its low cost, the ease of its immobilization, its resistance to biological and chemical degradation and high protein-binding capacity of the corresponding adsorbents. However, its interaction with a large number of seemingly unrelated proteins inevitably compromises its protein binding specificity. This endows Cibacron blue with a serious drawback. To cope with the lack of specificity of textile dyes, a better understanding of the binding and specific mechanisms between dye-ligand and different proteins is required. Molecular dynamics simulation provides clear and direct microscopic information. It has been successfully used in our former work to explore the ion-exchange chromatographic adsorption of proteins. For a comprehensive investigation of the interaction between Cibacron blue and proteins from both microscopic and macroscopic point of view, a research project combining molecular dynamics simulation and adsorption experiments has been planned. Two different proteins, serum albumin and hemoglobin, have been introduced as model proteins to study and compare their interactions with Cibacron blue. In this presentation, the first part of this project, molecular dynamics simulations investigating the interactions between Cibacron blue and these two proteins will be shown. All-atoms models of these affinity interaction systems were applied for a precise study. The interaction as well as the binding sites of proteins will be analyzed and discussed in detail. For a better understanding of the specific mechanism, the simulations of these two proteins will be compared. These
Simulation results will be compared with the former experimental results. They guide the further experimental part of this project. Moreover, the simulation results will be combined with the experimental results to obtain a comprehensive understanding of these interactions, which is important for the design of new dye-ligands, as well as the optimization of dye-ligand affinity chromatography.

ABSTRACT

Fuel cells are electrochemical devices that can efficiently convert the chemical energy of the fuel directly into electrical energy. They operate like batteries but they do not get exhausted and are environmentally friendly. As long as fuel is supplied to the cell along with an oxidant, the fuel cell continues to produce electrical energy and heat. Several types of fuel cells exist but the Proton Exchange Membrane Fuel Cell (PEMFC) is well suited for applications where quick start-up and quick response to load changes is required and where a low operating temperature and high power density are benefits. One of the worst problems in a PEMFC is the pressure loss of the gas in flow field plates. The aim of this research was to test the influence of the increased of the flow channel depth on the pressure loss. For the tests and visualization of the pressure loss on the flow channels was used the SolidWorks 2013 software. In the both situations we had a volume flow of 1 L/min in the inlet (water in room temperature) and a environment pressure in the outlet. The temperature of the plate was controlled in 100°C. In the first situation the inlet and the outlet had 2 mm depth and the channel length had 50 mm. In this case the pressure loss was 5121.09 Pa. According to results is possible realize that the variation of pressure between inlet and outlet is lesser in the second situation and therefore we can conclude that increasing the depth of the flow field channels decrease the pressure loss, improving the fuel cell performance but increases the thickness of the flow fields plate and thus lowers the power density of the stack.

ABSTRACT

To develop novel biocomposites, three different silk-fibroin fabrics (plain woven fabric, plain weft-knit fabric and non-woven fabric) were, respectively, blended with poly(e-caprolactone) (PCL) by a solution blending method. The effects of various fabric structures on the mechanical and microstructure properties of silk-fibroin fabric reinforced (SF-fabric-reinforced) PCL biocomposites were investigated. It was obvious that the breaking strength and elongation of SF-fabric-reinforced PCL biocomposites decreased while the Young’s modulus increased. Scanning Electron Microscopy (SEM) photographs showed that silk-fibroin fabrics were well bonded with PCL matrix. From Wide-Angle X-ray Diffraction (WXRD) analysis, plain woven and plain weft-knit fabrics showed higher ability to increase the crystallinity of PCL matrix compared with non-woven fabric.

ABSTRACT

Functionalized metal organic framework (MIL-53) having quaternary ammonium group was prepared by microwave. They showed good catalytic performance for the cycloaddition of allyl glycidyl ether (AGE) and carbon dioxide without any solvent. The synthesized catalysts were characterized by x-ray diffraction (XRD), FT-IR, BET and TGA. The effects of reaction time, reaction temperature, CO2 pressure and alkyl halides on the reactivity were discussed. The MIL-53-NMe3I showed good reactivity at moderate temperature and CO2 pressure from 80 - 160 °C and 0.6 - 1.6 MPa. The catalytic performance results revealed that AGE conversion increased with increasing reaction temperature and CO2 pressure. The functionalized MIL-53 exhibited much higher AGC yield than MIL-53. MIL-53-NMe3I with more nucleophilic anion exhibited better reactivity for the cycloaddition reaction.

ABSTRACT

Sulfonate functionalized metal organic coordination framework for cycloaddition of carbon dioxide and styrene oxide was synthesized. The MIL-53-NMe3I catalyst showed good catalytic performance for the cycloaddition of allyl glycidyl ether (AGE) and carbon dioxide without any solvent. The synthesized catalysts were characterized by x-ray diffraction (XRD), FT-IR, BET and TGA. The effects of reaction time, reaction temperature, CO2 pressure and alkyl halides on the reactivity were discussed. The MIL-53-NMe3I showed good reactivity at moderate temperature and CO2 pressure from 80 - 160 °C and 0.6 - 1.6 MPa. The catalytic performance results revealed that AGE conversion increased with increasing reaction temperature and CO2 pressure. The functionalized MIL-53 exhibited much higher AGC yield than MIL-53. MIL-53-NMe3I with more nucleophilic anion exhibited better reactivity for the cycloaddition reaction.
ABSTRACT
Receiving and properties the interpolimernyk of sorbents polyaniline compositions with components of Nuratinsky bentonite is probed. Optimum conditions of receiving and property of polyaniline sorbents of industrial sewage used for cleaning and flue gases are studied. Ingredients of a polyaniline aggregate are defined optimum a ratio.

Article ID: 50057
Title: The Possible Application Of Waste Manufacture Of Nitric Fertilizers At Development Of Composite Polymer Chemical Reagent To Produce Clayless Drilling Mud Is Applied In The Process Of Drilling Oil And
Name: Komila Negmatova
Affiliation: Tashkent State Technical University
E-mail: max74-07@mail.ru

ABSTRACT
Based on the analysis of the results of comprehensive studies on the physico-chemical properties of the carbonate polymer waste nitrogen fertilizer production association "Ferganaazot" – not suite and their influence on the properties of polymer composites KHR-1 identified and developed the optimum compositions of composite polymer chemicals for drilling fluids clayless used in drilling oil and gas wells in complicated geological conditions and to pre improve.

Article ID: 50053
Title: Polymer Composite Materials Functional Purpose On The Basis Of Polyethylene
Name: Nodira Abed-Negmatova
Affiliation: Tashkent State Technical University
E-mail: polycomft2005@rambler.ru

ABSTRACT
Based on the analysis of the results of comprehensive research on the changes in the physical and mechanical properties of polyethylene filled with various ratios of mineral, fiber and carbon-graphite fillers and the optimal formulation. Developed more efficient composite polymeric materials functional purpose, having good strength properties, high wear resistance and high reliability in operation in the climatic conditions of Uzbekistan.

Article ID: 50124
Title: Spontaneous Polymerization Of The Tetrahydro-1,4-oxazine With 3-Chlorine-1,2-epoxypropane
Name: Ulugbek Urinov
Affiliation: Tashkent State Technical University
E-mail: max74-07@bk.ru

ABSTRACT
In the work spontaneous polymerization of the tetrahydro-1,4-oxazine with 3-chlorine-1,2-epoxypropane in mass and in the medium of various organic solvents have been studied. It is shown, that a limiting stage of process of polymerization is quaternization reaction, that is the formation of quaternary salts which are involved in the polymerization. The influence of the nature of solvent, temperatures and concentration of initial reagents on polymerization process has been studied.

Article ID: 50061
Title: Development Of Optimal Composition Of Solution Of Polymer Composition In Order To Refine Regenerated Protein Fiber And Researching Its Physical – Chemical Feature
Name: Rasul Davlatov
Affiliation: Tashkent State Technical University
E-mail: polycomft2005@rambler.ru

ABSTRACT
Processing by compositions was applied to improving of quality indicators of a natural proteinaceous fiber on the basis of water-soluble polymers and their polyequiquaternary salts of polyatomic alcohols. Existence as a part of composition of water-soluble polymers and their salts will promote lowering of a level of damage of a surface of fibers, and also increase in forces between fibers, and it in turn brings to lowering of hairiness both separate fibers, and a yarn as a whole. Besides, macromolecules of water-soluble polymers and their salts as hydrophilic substances too promote stabilizing of humidity of a fiber.

Article ID: 50214
Title: Research And Development Of New Powder Colorific Compositions Based On Salts Of Polyvalent Metals For Dyeing The Natural And Synthetic Fibers And Textile Materials On Their Bases
Name: Shokhista Rasulova
Affiliation: Tashkent State Technical University
E-mail: polycomft2005@rambler.ru

ABSTRACT
On the basis of comprehensive studies were designed the optimum compositions of powder colorific compositions based on salts of polyvalent metals for cellulosic and protein and polyamide fibers and fabric dyeing technology based on them. Powder colorific compositions for textiles based on cellulose, protein and polyamide fibers, due to their interaction with the fiber, help creating salt, coordination and covalent connections and creating the coloring on fibers, which has a high resistance to various physical and chemical effects. Dyeing of cotton, protein and polyamide fibers with colorific composition is carried out in an acidic environ at pH 3-4. At the boiling temperature reaches its equilibrium in the case of dyeing textile materials based
on cotton fabrics - 6-7 minutes, protein fibers for 2-3 minutes, polyamide for 35-40 minutes. The obtained colorings are characterized by high resistance to various physical and chemical factors: washing, dry cleaning, abrasion and light.

Article ID: 50101
Title: MODIFIED ANTICORROSIVE POLYMER COATINGS FOR PROTECTION OF METALS FROM CORROSION
Name: Khamza Shodiev
Affiliation: Tashkent State Technical University
E-mail: polycomft2005@rambler.ru

ABSTRACT
In the work studied the effect of fillers on the mechanical properties of coatings based on modified epoxy resin ED-20. It is shown that the filling composition can significantly reduce the curing compositions are hardening polymer matrix ensuring a high homogeneity of the system and improve the physical, mechanical and performance properties.

Article ID: 50211
Title: IMPROVEMENT OF TECHNOLOGICAL PROPERTIES OF NATURAL WOOLEN FIBRES BY SOLUTIONS OF A POLYMERIC COMPOSITION
Name: Rasul Davlatov
Affiliation: Tashkent State Technical University
E-mail: polycomft2005@rambler.ru

ABSTRACT
By us it was shown that wool processing by water solutions on the basis of water-soluble polymers and their salts, polyatomic alcohols promotes improving of its mechanical properties. The highest mechanical properties the fiber into which composition the solution consisting of 2.5% polidimetilaminoetilmetakrilat from allilbromidy, 5.0% of glycerin and 92.5% of water is entered possessed. Therefore in operation were in more detail probed influence of the solutions consisting from polidimetilaminoetilmetakrilat with allilbromidy, glycerin, both on mechanical properties, and on technical performances.

Session 5: Biomedical Engineering and Biotechnology (BEB-S)

Article ID: 80070
Title: Reducing Radiation Dose By Using Pulse X-Ray Apparatus
Name: Komarskiy Alexander
Affiliation: The Institute of Electrophysics of the Ural Division of the Russian Academy of Science
E-mail: aakomarskiy@gmail.com

ABSTRACT
Pulse X-ray diagnostics is capable of reducing the radiation exposure considerably. As for pulse X-ray diagnostic machines, which form pulses with the duration of 0.1 μs, using them one can get outstanding results in this area. This fact can be explained by the long period of luminophor per-sistence in intensifying X-ray luminescent screens. In this paper we present experimental data, comparing radiation doses, measured at pulse X-ray apparatus and apparatus of constant radiation.

Article ID: 80102
Title: Incorporation of carboplatin in microporous granular calcium phosphate biphasic matrix
Name: Cleomar Copatti
Affiliation: Santa Catarina University
E-mail: copattic@yahoo.com.br

ABSTRACT
The HA/β-TCP biphasic bioceramics stand out on researches in different areas of biomedical applications. These bioceramics with microporous microstructures also
ABSTRACT

This study was conducted to investigate the prevalence of haemoparasites of dogs attending ECWA veterinary Clinic, Bukuru, Jos South local government area in Plateau state, Nigeria, and to determine the effective control strategy. From July to September 2011, blood samples of 150 dogs were collected and examined under light microscope. The age, sex and breed of the dogs were also recorded. Wet and unstained blood film shows no motility hence no motile haemoparasite while the Giemsa stained blood smear techniques of both thick and thin film, showed the presence of only Babesia spp in 89 (59.3%), while 61 (40.7%) were negative for any haemoparasite.

Article ID: 80055
Title: In vitro immersion behavior of cold sprayed hydroxyapatite/titanium composite coatings
Name: Xuan Zhou
Affiliation: Kettering University
E-mail: xzhou@kettering.edu

ABSTRACT

In previous study, dense and homogenous 20wt% HAP/Ti composite coatings were successfully deposited on Ti substrates by cold gas dynamic spray technique. The results revealed that the phase composition of the HAP in the deposit is identical to that of the precursor powder and the bonding strength of the deposit is comparable/better to that of the plasma sprayed HAP. A relatively higher corrosion current of HAP/Ti composite than that of pure Ti coating in simulated body fluid indicates a good bioactivity for composite coating. In the present study, in vitro immersion test is carried out for various period of time and the formation of apatite layer on surface of composite coating proves the good bioactivity of the composite coating furtherly. The cold sprayed HAP/Ti composite can be anticipated to be a promising load-bearing implant material for biomedical applications.

Article ID: 80125
Title: Light curable nanocomposite hydrogels from poly-γ-glutamic acid as drug delivery system
Name: Csaba Hegedus
Affiliation: University of Debrecen
E-mail: bako.joszef@dental.unideb.hu
ABSTRACT

Objective: The poly-γ-glutamic acid (PGA) and biodegradable polymers are more intensively researched area of the material science, because they are compatible, permeable and nontoxic, and they have tissue-like properties [1-3]. These polymeric systems can be used for delivery of antimicrobial drugs and biological active agents or different types of cells [4,5]. The aim of our work was to create light cured hydrophilic polymer gels. This injectable form of nanocomposites can offer more flexibility of dosage and creates the opportunity for the usage of these structures as a drug delivery system. [6, 7]

Methods: Transforming the PGA- backbone by methacryloyl pendant groups allows formation of hydrogels for biomedical applications. Using an acceptable photo-initiator this will be polymerizable with blue lights as it is used in the dental practice. In addition the PGA can be modified with diamino compound and in this way nanoparticles were obtained. These nanoparticles can be used as physically bonded filler, or it can be made reactive just as the PGA too. The methacryloyl-group bonded polymer and the nanoparticles were studied with NMR, DLS, and SEM. The biocompatibility of the nanocomposites, and the raw materials were investigated by MTT- and LDH-tests, and the swelling and release characteristic were measured. Results: The success of the crosslinking and the bonding of methacryloyl group are proved by NMR spectra. The nano-sizes of PGA particles were showed by the DLS and the SEM analyses. A novel system can be built using nanoparticles physically or chemically bonded to the matrix. As the LDH-test showed ~2% cytotoxicity and MTT test results presented more than 98% for viability, it can be stated that the system and all of the components were not cytotoxic. According to the drug release measurements these new hydrogels were useful drug delivery systems. The swelling ratio was 140-160% after 24 hours, and the application of nanoparticles showed retentive effect for the drug release in the first 48 hours. Conclusion: This is a model system for in situ cured local drug delivery devices for curing periodontal diseases as all of the components are biocompatible and biodegradable. The system can be modified by the crosslinking density of the PGA, but there are nanoparticles for potential controlling of properties. The local controlled release can raise the effectiveness of the drugs, using the minimal applicable dose. This work is supported by TAMOP 4.2.4. A/2-11-1-2012-0001 „National Excellence Program – Elaborating and operating an inland student and researcher personal support system convergence program, and by the TAMOP-4.2.2.A-11/1/KONV-2012-0036 project. The project was subsidized by the European Union and co-financed by the European Social Fund. References: 1. Jozsef Bako, Miklos Vecsernyes, Zoltan Ujhelyi, Ildiko Bacskay Kovacsne, Istvan Borbolo, Tamás Biro, Janos Borbely, and Csaba Hegedus: Composition and characterization of in situ usable light cured dental drug delivery hydrogel system, J Mater Sci Mater Med, 2013; 24(3):659-666. 2. Jozsef Bako, Marta Szepesi, Adrienn J. Veres, Csaba Cserhati, Zsuzsa M. Borbely, Csaba Hegedus, Janos Borbely: Synthesis of biocompatible nanocomposite hydrogels as a Local drug delivery system, Colloid Polym Sci, 2008; 286(3):357-363. 3. Bako J, Szepesi M, Marton I, Borbely J, Hegedus C: Synthesis of nanoparticles for dental drug delivery systems. Fogorv Sz. 2007; 100(3):109-113. 4. Lee SC, Kwon IK, Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev. 2013; 65(1):17-20. 5. Lan SF, Kehinde T, Zhang X, Khajotia S, Schmidtke DW, Starly B. Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants. Dent Mater. 2013; 29(6):656-65. 6. Palma Santana B, Nedel F, Piva E, Varella de Carvalho R, Fernando Demarco F, Lenin Villarreal Carre’N. Preparation, modification, and characterization of alginate hydrogel with nano-/microfibers: a new perspective for tissue engineering. Biomed Res Int. 2013; 2013:307602. 7. Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP. Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater. 2013; 29(1):103-15.

Article ID: 80230

Title: Hemodynamic effect of different types of plaques in the left coronary artery models

Name: Zhonghua Sun

Affiliation: Curtin University

E-mail: z.sun@curtin.edu.au

ABSTRACT

Purpose: Coronary plaques have been shown to directly affect the blood parameters, however, hemodynamic effect due to various plaque configurations has not been studied. In this study we investigate the hemodynamic effects of various types of plaques in the left coronary artery using computational fluid dynamics. Materials and Methods: Eight types of plaque configurations were simulated and located in various positions in the left main stem, the left anterior descending and left circumflex coronary branches to produce a significant stenosis (&gt;50% lumen narrowing). Hemodynamic effects caused by each type of plaque were analysed and characterised. Computational fluid dynamics was performed to simulate realistic physiological conditions that demonstrate the in vivo cardiac hemodynamics. Blood flow velocity, wall shear stress (WSS) and pressure gradient (PSG) in the left coronary artery were calculated and compared in all plaque configurations during cardiac cycles. Results: Our results showed that the highest velocity and PSG were found in the type of plaque configurations which involved all of the three left coronary branches. Plaques located in the left circumflex branch resulted in highly significant changes of the
velocity, WSS and PSG (p<0.001) when compared to the other types of plaque configurations. Conclusion: Our analysis of the hemodynamic effects of different types of plaques provides an insight into the distribution of plaque at the left coronary artery, and corresponding hemodynamic effects, thus, improving our understanding of atherosclerosis.

Article ID: 80062
Title: The new bone cement based on magnesium phosphate and αTCP
Name: A. Zima, D. Siek, A. Slosarczyk
Affiliation: AGH- University of Science and Technology, Krakow, Poland
E-mail: azima@agh.edu.pl

ABSTRACT
Bone cements based on calcium and magnesium phosphates are very interesting new implant materials which can be used as the bone fillers. Due to their properties combining the advantages of both components like fast resorption in the body (brushite cement) and high mechanical strength (struvite cement), these biomaterials may provide an alternative solution to the order generation calcium phosphate cements. The aim of this study was to obtain and evaluate the new brushite-struvite bone cement formed as a result of the reaction between tricalcium phosphate (αTCP), magnesium phosphate and ammonium dihydrogen phosphate. As the liquid phases: distilled water, 0.5% methylcellulose solution and 1% sodium alginate solution were used. The optimal liquid to powder ratio and initial and final setting time were examined. After setting and hardening the phase composition, open porosity, microstructure, mechanical strength and chemical stability were determined. The physicochemical properties of obtained material were influenced by the type of liquid phase used in the cement pastes preparation. The high chemical stability and bioactivity were confirmed. Initial (I) and final (F) setting times of our material depended on the kind of applied liquid phase and differed in the range of 6 min (I) and 29 min (F). A sodium alginate solution slightly shortened the setting time. XRD analysis revealed the presence of two dominant phases, namely brushite (from 57 to 68 % wt.) and struvite (from 21 to 39 % wt.) and small amount of hydroxyapatite (up to 6 % wt.). The percentage of brushite and struvite phases in the samples depended both on the type of liquid phase as well as the time after setting and hardening. Open porosity of the studied material was in the range from 34.8 to 37.0%. Developed cement was characterized by a monomodal pore size distribution in the range of 0.1 to 0.4 μm. After incubation in SBF solution formation of apatite layer on the sample surfaces was observed what indicates the bioactive character of the new bone filler. The compressive strength of obtained material was in the range from 10 to 16 MPa. The new bone cement based on tricalcium phosphate (αTCP), magnesium phosphate, ammonium dihydrogen phosphate and the 1% solution of sodium alginate is very interesting implant material for bone substitution. Its final evaluation will be possible after further studies, including biological tests.

Article ID: 80247
Title: Converging parallel plate flow chambers for studies on the effect of the spatial gradient of wall shear stress on endothelial cells
Name: Yiling Lu
Affiliation: University of Derby
E-mail: y.lu@derby.ac.uk

ABSTRACT
Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.

Article ID: 80260
Title: Influence of synthesis parameters on the structure, pore morphology and bioactivity of a new mesoporous glass
Name: Hassane Oudadesse
Affiliation: University of Rennes
E-mail: hassane.oudadesse@univ-rennes1.fr

ABSTRACT
The main objective of the present work was to investigate the effect of surfactant type and synthesis temperature on the structure, porosity and the bioactivity of 92S6 (92% SiO2, 6% CaO, and 2% P2O5 mol %) mesoporous sol-gel glasses. The aim was to provide a basis for controlling the bioactive behavior of the different 92S6 samples used for tissue regeneration and for biomedical engineering in order to obtain sufficient performances by...
controlling the porosity of the glass. In this work, a series of mesoporous bioactive glasses were synthesized using three different surfactants (C10H20BrN, C19H42BrN, C22H48BrN) at different aging temperatures (20°C, 40°C, 60°C and 60°C). The surfactant was removed by calcination, which was carried out by increasing the temperature to 650°C for 6h. A comparison among these synthesized glasses was conducted and the research emphasis was placed on the synthesis temperature and the surfactant type dependence on the textural properties and particularly porosity that were ultimately responsible for glass bioactivity. The structure and the morphology of synthesized glasses were studied by means of Wide Angle X-ray powder Diffraction (WAXRD), analysis of nitrogen adsorption/desorption isotherms, and by Scanning Electronic Microscopy (SEM). Bioactivity of glasses was investigated, in vitro, by soaking them for prolonged times in simulated body fluid and the resulting solutions were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

ABSTRACT

Surface plasmon resonance (SPR) biosensor utilizing a pair of off-axis parabolic mirrors was employed to construct as a universal platform with a dynamic range covering from air to a water solution. Utilization of parabolic mirrors ensures that the incident angle of the excitation light beam can scan over a large range while the light source and the interrogation system do not move with the tuning incident angle. Thus this platform can equip a complicated interrogation method requiring a precise optical alignment for high sensitivity without scaringfy a large dynamic range. High sensitivity test of molecular binding under different solvents is thus possible. Angular interrogation and intensity interrogation were demonstrated in this system. The range of the incident angle is solely limited by the covering range of parabolic mirrors. The system can be easily inte-grated into a microscopy platform for further investigation of a detected target in micro scale.

ABSTRACT

It is known that gamma radiation is used for sterilizing most of the medical products that made of plastics, because it decomposes the DNA molecules of living organisms. The material has usually been irradiated between 25 and 70kGy. The present study is intended to (1) fabricating of homogenous HDPE / HA nano-composite, and (2) studying the effects of HA nano particles percentage and gamma irradiation dose on hardness and creep-relaxation behavior of the HDPE/HA nano-composite. Main findings are the hardness increases with increasing the HA nano particles contents and with irradiation dose. Creep resistance increases significantly due to the addition of HA and due to aging.

ABSTRACT

In this paper we shall investigate some of the most general results concerning random integral equations of the Volterra type. Some results of Tsokos [4] are given for the random integral equation . Using the theoretical techniques of probabilistic functional analysis we prove the existence and uniqueness of random integral equations of the Volterra type . Some applications of Eq (1.1) will be presented in the areas of telephone traffic theory. And a generalization of the classical poincare&Lyapunov theorem
due to a Porous Stretching Sheet

Name: FAIZA M.N. EL-FAYEZ
Affiliation: Princess Nora Bint Abdul Rahman University
E-mail: dr.faiza5@hotmail.com

ABSTRACT
An electrically conducting fluid is driven by a stretching sheet, in the presence of a magnetic field that is strong enough to produce significant Hall current. The sheet is porous, allowing mass transfer through suction or injection. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained through parameter straining. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the surface. The two-term expansions of the surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions; even at moderate magnetic fields.

Article ID: 80101
Title: Parameter identifiability and parameter estimation of a diesel engine combustion model
Name: Lilianne Denis-Vidal
Affiliation: University of Compiegne
E-mail: viden@orange.fr

ABSTRACT
In this paper an original method based on the link between a piecewise identifiability analysis and a piecewise numerical estimation is presented for estimating parameters of a phenomenological diesel engine combustion model. This model is used for design, validation and pre-tuning of engine control laws. A cascade algebro-differential elimination method is used for studying identifiability. This investigation is done by using input-output-parameter relationship. Then these relations are transformed by using iterated integration. They are combined with an original numerical derivative estimation based on distribution theory which gives explicit point-wise derivative estimation formulas for each given order. Then new approximate relations, linking block of parameters and outputs (without derivative) are obtained. These relations are linear relatively to the blocks of parameters and yield a first estimation of parameters which is used as initial guess for a local optimization method (least square method and a local search genetic algorithm.)

Article ID: 80176
Title: Framework of Penrose Transforms on DP-Modules to the Electromagnetic Carpet of the Space-Time from the Moduli Stacks Perspective
Name: Francisco Bulnes
Affiliation: TESCHA COMECYT
E-mail: francisco.bulnes@tesch.edu.mx

ABSTRACT
Considering the different versions of the Penrose transform on modules and their applications to different levels of modules in coherent sheaves, we obtain a geometrical re-construction of the electrodynamical carpet of the space-time, which is a direct consequence of the equivalence between the moduli spaces that have been demonstrated in a before work. In this case, the equivalence is given by the Penrose transform on the quasi-coherent modules given by the generalized Verma modules diagram established in the Recillas conjecture to the group and consigned in the modules on which have been obtained solutions in field theory of electromagnetic type.

Article ID: 80194
Title: The Asymptotic Eigenvalues of First-Order Spectral Differentiation Matrices
Name: Jue Wang
Affiliation: Union College
E-mail: wangj@union.edu

ABSTRACT
We complete and extend the asymptotic analysis of the spectrum of Jacobi Tau approximations that were first considered by Dubiner. The asymptotic formulas for Jacobi polynomials $P_N^{(\alpha,\beta)}$, $\alpha, \beta > -1$ are derived and confirmed by numerical approximations. More accurate results for the slowest decaying mode are obtained. We explain where the large negative eigenvalues come from. Furthermore, we show that a large negative eigenvalue of order N^2 appears for $-1 < \alpha < 0$; there are no large negative eigenvalues for collocations at Gauss-Lobatto points. The asymptotic results indicate unstable eigenvalues for $\alpha > 1$. The eigenvalues for Legendre polynomials are directly related to the roots of the spherical Bessel and Hankel functions that are involved in solving Helmholtz equation in spherical coordinates.

Article ID: 80128
Title: Iterative Construction of Common Fixed Point of Quasi-Nonexpansive Mappings in a Convex Metric Space
Name: Hafiz Fukhar-ud-din
Affiliation: King Fahd University of Petroleum and Minerals
E-mail: hfdin@kfupm.edu.sa

ABSTRACT
The Banach contraction principle asserts that a contraction on a complete metric space has a unique fixed point and its proof hinges on "Picard iterations". This principle is applicable to a variety of subjects such as integral equations, partial differential equations and engineering of image processing. This

Article ID: 80067
Title: Eigenpairs of a Sylvester-Kac type matrix and a general stochastic model for deposition and evaporation of particles
Name: Carlos Fonseca
Affiliation: Kuwait University
E-mail: carlos@sci.kuniv.edu.kw

ABSTRACT
A general random sequential model for deposition and evaporation on discrete cells of a finite lattice of any dimension leads to a matrix equation involving a Sylvester-Kac type matrix. Based on several combinatorial techniques, the eigenvalues and eigenvectors of the general matrix are determined for an arbitrary number of cells. These new mathematical results are used to find an exact solution for the time-dependent particle density for initial conditions relevant to the experimental technique of ionic self-assembly of nanoparticles. The usefulness and the limitations of this model are discussed by comparing it to both Monte Carlo simulations and experimental results.

Article ID: 80196
Title: Is there Chaos In Inflation Data?
Name: Pritha Das
Affiliation: BES University
E-mail: prithadas01@yahoo.com

ABSTRACT
Economic indicators are snippets of financial and economic data published regularly by governmental agencies and the private sector. An exchange rate represents the value of one currency in another and it fluctuates over time. ForEx rates are affected by many highly correlated economic, political and even psychological factors. It was observed that changes in the exchange rate are related to news in the fundamentals which covers In"ation for the country concerned. In a series of work, we investigated and confirmed the chaotic property of ForEx Rates of several countries. In this perspective, we concentrate on nonlinear data analysis of inflation data of nine countries. We find existence of chaos in inflation data for some countries.

Article ID: 80225
Title: Bifurcation and chaos in delayed cellular neural network model
Name: Pritha Das
Affiliation: BES University
E-mail: prithadas01@yahoo.com

ABSTRACT
This paper deals with control of chaotic behavior of a delayed Cellular Neural Network (DCNN) model which is a one-dimensional regular array of four cells with continuous activation function. We investigate different dynamical behaviors including limit cycle, torus, and chaos for different range of weight parameters of the system. Regarding synaptic weight as parameter, Hopf bifurcations are obtained in the system without delay. In the delayed model condition for the Global asymptotic stability of the equilibrium point is presented. Numerical simulation and results are given to show the role of delay in chaos control of the CNNs.

Article ID: 80206
Title: The traffic flow model for road networks
Name: Yaroslav Kholodov
Affiliation: Moscow Institute of Physics and Technology
E-mail: kholodov@crec.mipt.ru

ABSTRACT
The traffic flow can be analyzed by different ways in depends of the personal preference relations. We restrict our discussion by “second-order” non-equilibrium continuum models because of the hyperbolic properties and the best compatibility for traffic jams modeling. It should be mentioned that the synchronized flow and the wide moving jams traveling through the bottleneck is considered to be the most difficult for modeling. Preferring the continuum macroscopic approach allows us to use all advantages enclosed.
In this talk, we present both theory and experimental applications of a numerical Globally Convergent Method (GCM) for an inverse problem in Diffuse Optical Tomography. The method is for an inverse problem for an elliptic partial differential equation with an unknown potential, an important problem at the core of Near-Infrared laser imaging technology for cancer and stroke detections. The GCM reconstruction method fundamentally differs from other current methods based on the Newton's method or optimization scheme. GCM does not require a relative precise first guess and hence it is capable in dealing with complex media and realistic geometry for biomedical applications. Several sets of boundary data measurements are generated by placing the light source at several designated locations. Mathematically, a global convergence theorem assures the success of the numerical reconstruction method. Then we use this method in experiments of an optical phantom emulating rat brain suffering a stroke. We present the experimental setup of optical measurements and report accurate images and their physical parameters of hidden interior objects inside an optical phantom, which are reconstructed based on light intensity data collected on the object’s surface.

Article ID: 80190
Title: Mode Stresses for the Interaction Between Straight and Curved Cracks Problem in Plane Elasticity
Name: Nik Mohd Asri Bin Nik Long
Affiliation: Universiti Putra Malaysia
E-mail: radz7cr@gmail.com

ABSTRACT
In this paper, the complex variable function method is used to obtain the hypersingular integral equations for the interaction between straight and curved cracks problem in plane elasticity. The curved length coordinate method and suitable quadrature rule are used to solve the integrals for the unknown function, which are later used to evaluate the stress intensity factor, SIF. Three types of stress modes are presented for the numerical results.

Article ID: 80126
Title: Common Fixed Point Iterations of Generalized Asymptotically Quasi-Nonexpansive Mappings in Hyperbolic Spaces
Name: Abdul Rahim Khan
Affiliation: KFUPM

ABSTRACT
We introduce a general iterative method to approximate common fixed points of a finite family of generalized asymptotically quasi-nonexpansive mappings in a hyperbolic space. The new iterative method includes multi-step iterative method of Khan et al. [Common fixed points Noor iteration for a finite family of asymptotically quasi-nonexpansive mappings in Banach space, J. Math.Anal. Appl. 341(2008), 1-11] as a special case. Our results are new in hyperbolic space and generalize many known results in Banach spaces and CAT(0) spaces simultaneously.

Article ID: 80151
Title: Crop water Requirements in Egypt Using Remote Sensing Techniques
Name: Mohammed El-Shirbeny
Affiliation: National Authority for Remote Sensing and Space Sciences (NARSS)
E-mail: mshirbeny@yahoo.com

ABSTRACT
The common Soil in Egypt is clay soil so common irrigation system is tradition surface irrigation with 60% irrigation efficiency. The area of cultivated land is 3277311 ha. Agricultural sector consumes more than 80% of water resources under surface irrigation (tradition methods). In arid and semi-arid regions consumptive use is the best index for irrigation requirements. A large part of the irrigation water applied to farm land is consumed by Evapotranspiration (ET). Irrigation water consumption under each of the physical and climatic conditions for large scale will be easier with remote sensing techniques. In Egypt, Agricultural cycle is often tow agricultural seasons yearly; summer and winter. Common summer crops are Maize, Rice and Cotton while common winter crops are Clover and Wheat. 16 day MODIS Normalized Difference Vegetation Index (NDVI) used to detect the period of winter and summer season. Landsat8 data and Monthly MODIS actual evapotranspiration (ETa) data were used to estimate actual quantity of water consumed by Agricultural sector in Egypt. The results of ETa_MODIS will be compared with the results of ETa_landsat8. The main objective of this paper is studying the actual Evapotranspiration in Egypt using remote sensing techniques.

Session 7: Material Sciences and Technology 2 (MST-S)

Article ID: 50217
Title: Effect of process on the dielectric properties of BaTiO3-based X9R ceramics
Name: Baolin Zhang
Affiliation: China Academy of Space Technology, 529

ABSTRACT
The effect of milling time and sintering process on the dielectric properties of BaTiO3-based X9R ceramics was
investigated. The characterization of the raw powders and the sintered ceramic was carried out by X-ray diffraction and scanning electron microscopy. The particle size distribution of the mixed powders was examined by Laser Particle Size Analyzer. The results shown that with the milling time extended, the Cruie Peak was depressed, or even disappeared. Moreover, with the rise of sintering temperature, the dielectric constant of the ceramics increased and the dielectric loss decreased gradually. Eventually, by milling for 11h and sintering at 1090℃ for 2h, good dielectric properties were obtained, which were ε25℃≥2526, εr/εr25℃≤±12% (–55~200℃), tanδ≤1.12% (25℃).

Article ID: 50221
Title: Low temperature sintering of lead-free BaTiO3-based X9R ceramics with Bi2O3 dopant and assisted by LiF-CaF2 Flux Agent
Name: Baolin Zhang
Affiliation: 529
E-mail: tjutju@163.com

ABSTRACT
The sintering temperature of BaTiO3 powder was reduced to 950°C due to the Bi2O3-LiF-CaF2 addition. Excellent densification was achieved after sintering at 950°C for 10h. The low sintering temperature of newly developed capacitor materials allows a co-firing with pure silver electrodes. The dielectric constant and the temperature stability of the dielectric constant satís&;ed the X9R standard, which dielectric properties of were ε25°C ≥ 1115, ΔC/C25°C ≤ &;amp;#177; 12% (–55~200°C), tanδ ≤ 1.5% (25°C).

Article ID: 50204
Title: Experimental study on axial tensile strength of low volume fraction of ternary hybrid fiber reinforced concrete
Name: Yuting Zhu
Affiliation: Hubei university of technology
E-mail: 906604945@qq.com

ABSTRACT
In this paper, according to the national standard and testing methods, the direct tension strength, splitting tensile strength and cubic compressive strength test were carried out for 8 different groups of hybrid fiber (containing steel fiber, macro-polypropylene fiber and dura fiber) reinforced HPC specimens. The results showed that the volume proportion of ternary hybrid fiber was less than 1%, there was not obvious influence for the concrete compressive strength, but the splitting tensile strength increased by 26% ~ 69%; the ratio between splitting tensile strength and compressive strength for HFRC increased to 1/12~1/9. When added 0.7% steel fiber, 0.19% macro-polypropylene fiber and 0.11% dura fiber, the confounding effect was the best. Based on the advantages and disadvantages of tensile splitting strength and direct tensile strength test and the results of tests, the concept of equivalent tensile strength and calculative formula was put forward.

Article ID: 50001
Title: High efficient photoreduction CO2 with H2O on metal Cu-modified graphitic ordered mesoporous carbon supported TiO2 catalysts under simulated solar
Name: Chengli Zhang
Affiliation: Fudan University
E-mail: zhangchengli197812@163.com

ABSTRACT
Cu-modified graphitic ordered mesoporous carbon supported TiO2 catalyst was synthesized based on a hard template method. X-ray diffraction, nitrogen adsorption-desorption, scanning electron microscopy and transmission electron microscopy analysis techniques were used to characterize the sample. It was observed that copper and anatase TiO2 nanoparticles were well dispersed in the Cu-modified mesoporous graphitic carbon, and the resulting composite with ordered mesostructure and high specific surface area exhibited an exceptionally high activity in the photocatalytic reduction of CO2 with H2O under simulated solar irradiation.

Article ID: 50014
Title: Electrochemical Corrosion Behavior of Different Graphite shapes Cast Irons in Acidic Solution
Name: zhuhuan yu
Affiliation: Xi'an University of Science And Technology
E-mail: yzh0709qyy@163.com

ABSTRACT
The effect of graphite shapes on the electrochemical corrosion behavior of cast iron was studied by means of weight loss tests, electrochemical measurements and electron microscopy. It was found that the electrochemical corrosion behavior of graphite is significantly different from one other, and the corrosive potential difference between carbide ad the matrix is the main driving force of the different phase corrosions. Among them, the center A type and edge D type graphite exhibited the highest corrosion resistance. The corrosion of white iron is worst, because there are so many type carbides in white iron and so there is an obvious tendency to produce micro-cell in white iron.

Article ID: 50015
Title: Facile Preparation and Growth Mechanism of Newly Shaped Gold Nanoplates
Name: Caixia Kan
The illumination of nanostructures will also be discussed. The possibility of creation of short electron pulses by laser destroying the structure of underlying silicon. The frequency and intensity of the laser it is possible to remove the hydrogen layer from the surface without changing the dynamics induced by strong laser pulses in the framework of the time-dependent density functional theory in real-time and real-space. Several prototypical examples will be used to highlight the correlated electron and nuclear dynamics in strong fields, including Coulomb explosion of clusters, laser-enhanced field emission from nanostructures, and laser-assisted desorption of hydrogen from surfaces of silicon clusters and graphene flakes. Our simulations of the Coulomb explosion of hydrocarbon molecules (see the figure) show that the dissociation is a sudden, all-at-once, “concerted” fragmentation where the ionization step is followed by an explosive ejection of the charged fragments. The study of the dynamics of hydrogen desorption from H-terminated silicon surface clusters demonstrates that by choosing an appropriate frequency and intensity of the laser it is possible to remove the hydrogen layer from the surface without destroying the structure of underlying silicon. The possibility of creation of short electron pulses by laser illumination of nanostructures will also be discussed.
Oxynitride glass; Ca-SiAlON ceramics, glass forming region; high nitrogen content; glass transition temperature; hardness; refractive index.

Article ID: 50077
Title: Induction Heating And Cell Viability Studies Of Polyol Synthesized Superparamagnetic ZnFe2O4 Nanoparticles For Cancer Hyperthermia Applications
Name: Sandip Sabale
Affiliation: Jaysingpur College
E-mail: srsabale@gmail.com

ABSTRACT
Superparamagnetic ZnFe2O4 nanoparticles were synthesized by polyol reflux method with simplicity and time efficiency. The structural, morphological, magnetic and induction heating properties of synthesized ZnFe2O4 nanoparticles have been investigated for application in magnetic particle hyperthermia. The as synthesized MNPs show superparamagnetism with minor coercivity of 67.3 Oe and 41.06 emu/g magnetization. The synthesized MNPs exhibited SAR value of magnitude 42.26 W/g. The MNPs have been also studied for its cell viability using Adenocarcinoma Lung Cancer Cell lines A549. This study shows low toxicity of MNPs on these cell lines proved their suitability for cancer hyperthermia as well as adjuvant studies of hyperthermia.

Article ID: 50112
Title: Eco-Friendly Synthesis Of Catalysts Using Flash Light Irradiation For A Direct Methanol Fuel Cell
Name: Sung-Hyeon Park
Affiliation: Hanyang University
E-mail: farksung@gmail.com

ABSTRACT
The electrochemical performance of pure platinum and Platinum-Ruthenium alloy nanoparticle catalysts fabricated by a combination method with sol-gel and flash light irradiation are investigated. Pt100 and Pt50-Ru50 alloy nanoparticles are decorated onto multi-walled carbon nanotubes (MWCNTs) followed by flash light irradiation to enhance the surface area. The fabricated pure Pt and Pt-Ru alloy nanoparticles/MWCNTs were characterized by X-ray diffraction and scanning electron microscopy. In order to evaluate the electro-catalytic activities for hydrogen characteristics and methanol oxidation, cyclic voltammetry studies was conducted. As the results, it is determined that the Pt50-Ru50/MWCNT catalyst has higher activity and stability with regard to methanol electro-oxidation than the Pt100/MWCNT.

Article ID: 50114
Title: The Effect Of Poly (N-Vinylpyrrolidone) (PVP) Molecular Weight On Flash Light Sintering Of Copper Nanoink
Name: Chung-Hyeon Ryu
Affiliation: Hanyang University
E-mail: rch5755@gmail.com

ABSTRACT
In this study, the effect of poly (N-vinylpyrrolidone) (PVP) molecular weight on flash light sintering of copper nanoink was investigated. The copper nanofilms were printed on the polyimide substrates using doctor blade methods. PVP was used as reducing agent of copper nanoinks for flash light sintering. Some flash light irradiation conditions (pulse numbers, on-time and off-time durations) and amounts of PVP are fixed. The effects of irradiation energy on the flash light sintering process and PVP molecular weight were investigated. To analyze the microstructures of the sintered copper nanofilms, scanning electron microscopy and x-ray diffraction was performed. The sheet resistance of the sintered copper nanofilms was measured using a four-point probe method. From this work, it was found that the flash light sintered copper nanofilms have the sheet resistance of 54 mΩ/sq without any damages to the substrate.

Article ID: 50116
Title: Highly Conductive Copper Precursor/Nanoparticle Pattern with Low Porosity via Flash Light Sintering for Printed Electronics
Name: Wan Ho Chung
Affiliation: Hanyang University
E-mail: nightsprit84@gmail.com

ABSTRACT
In this work, the fabrication and flash light sintering process for hybrid copper nano-inks was studied. The hybrid copper nano ink was made of various copper precursors (e.g. copper (II) chloride, copper (II) nitrate trihydrate, copper (II) sulfate pentahydrate and copper (II) trifluoroacetylacetonate) and copper nanoparticles. The effects of each copper precursor and the effect of weight fraction of copper precursor in hybrid copper nano ink on the flash light sintering process were investigated. The printed hybrid copper nano-ink was sintered at room temperature and under ambient conditions using an in-house flash light sintering system under various light conditions (light energy and on-time). The surface of the sintered hybrid copper film was analyzed using a scanning electron microscope (SEM). To investigate effect of copper precursor a crystal phase analysis using X-ray diffraction (XRD) were performed. In addition, the sheet resistance of hybrid copper film was measured by a four point probe method. The measured sheet resistance of hybrid copper film (19 mΩ/sq) was similar to the sheet resistance of bulk copper (1.68 mΩ/sq, thickness: 10 μm).
Article ID: 50180
Title: The Change Of Processing Maps In Hot Compression Procession For Ti-6.0Al-7.0Nb Biomedical Titanium Alloy
Name: Yanhui Liu
Affiliation: Northwestern Polytechnical University
E-mail: 804086831@qq.com

ABSTRACT
Isothermal compression tests were carried out on Ti-6.0Al-7.0Nb biomedical titanium alloy at the temperatures of 750–900°C (all below β phase transition temperature about 1010°C) and strain rates of 0.001–1.0s⁻¹. The processing maps were constructed to evaluate the efficiency of power dissipation (η) and recognize the flow instability regimes. True strain takes great effect on the efficiency of power dissipation η under the different temperatures and strain rates. The value of power dissipation η increases from 0.1 to 0.7 in most areas. When the strain is 0.9, the value of power dissipation η in most regimes is from 30% to 40%. There are two instability regimes respectively located around 780°C/1.0s⁻¹ and 860-900°C/0.001-0.01s⁻¹ when the strains are below 0.5. One of the instability regimes disappears when the strains are 0.5-0.7. When the strain is 0.9, there are still two instability regimes. The “safe” regime located around 780-840°C/0.1-0.01s⁻¹, and hot deformation can be carried out in this area.

Article ID: 50188
Title: Statistical Analysis of Pit Dimensions for Pre-corroded AA 7075-T6
Name: Yongfang Huang
Affiliation: Xiamen University
E-mail: yfh-06@xmu.edu.cn

ABSTRACT
Aluminum alloy 7075-T6 specimens were corroded in 3.5% NaCl solution for 120 hours and 240 hours, respectively. Morphology and dimensions of corrosion pits on specimen surface were inspected with Sensofar PLµ confocal imaging profiler. Statistical analysis shows that pit dimensions can be fitted well with log-normal and Gumbel distribution. After surface inspections, we performed high-cycle fatigue tests for the specimens. Fracture analysis shows that fatigue cracks initiate from single pit or two adjacent pits, and the crack-initiation pit shape and dimensions were examined with SEM. It is found that initiation pit dimensions can be well described with the log-normal distribution. Additionally, initiation pit dimensions are significantly larger than those measured on specimen surface before fatigue tests.

Article ID: 50215
Title: Flexural toughness of hybrid fiber reinforced concrete under notched beam three-point bending
Name: Dongtao Xia Xia
Affiliation: Hubei University of Technology
E-mail: xdtxy@126.com

ABSTRACT
In order to focus on hybrid fiber reinforced concrete flexural toughness,mixed 0.7% steel fiber/0.3% modified polypropylene fiber reinforced concrete, mixed 0.89% steel fiber/0.11% Dura&amp;#160;fiber reinforced concrete were chosen to perform flexural toughness test. The test method is giving a central point load to the notched beam specimens (H*B*L:150mm*150mm*550mm, h1*B1:2mm*25mm) with a 0.2 mm/min loading rate. The load we carry out should not stop until the mid span deflection is more than 3nm.Based on calculating the contribution of the fiber to the energy absorption value Dcr when the concrete cracking, the contribution of the fiber to the energy absorption value D1f when mid-span deflection is δ1, the contribution of the fiber to the energy absorption value D2f when mid-span deflection is δ2 and the equivalent flexural tensile strength feq1,feq2, the effect of the way use to hybrid fiber on the flexural toughness of concrete were investigated. The results shows that the hybrid fiber can significantly improve the flexural toughness of concrete, have favorable deformability and the ability to control crack. The result of 0.7% steel fiber/0.3% modified polypropylene fiber reinforced concrete is shown: Dcr=2185 N•mm, D1f=7634.26 N•mm, D2f=2198.67 N•mm, feq1=4.89 MPa, feq2=2.83 MPa, hence it shows the positive enhancement effect of hybrid fiber and flexural toughness increase significantly.

Article ID: 50216
Title: Utilisation of Magnetic Intelligent Material for Rotor Systems Control
Name: Katarzyna Majewska
Affiliation: Institute of Fluid-Flow Machinery Polish Academy Of Sciences
E-mail: k.majewska@imp.gda.pl

ABSTRACT
The Authors present an idea of MSM actuator and MR damper usage as a multifunctional material device for control, altering, reducing and tuning of forced vibration responses of a rotor system.

Article ID: 50228
Title: Spiropyran Conjugated Biomaterials as Colorimetric detector
Name: Chan Jin Jeong
Affiliation: Korea National University of Transportation
E-mail: jcj0322@ut.ac.kr
ABSTRACT
Spiropyran are demandable photochromic compounds, which can easily be interconverted between ring-closed colorless spiropyran (SP) and colored ring-opened merocyanine (MC) form. Upon UV light irradiation, colorless SP forms show facile ring opening reaction, resulting in colored MC form. Due to photochromic behavior, if spiropyran is conjugated to a polymer that can be used as a drug carrier, then it is possible to figure out the position of the carrier via imaging. First we designed thermo- and photodual responsive behavior of bio compatible SP-PL micelles after successful conjugation of spiropyran onto Pluronic backbone as fluorescent biomaterial. Also we synthesized spiropyran conjugated hyaluronic acid (HA-SP). The next mixed graphene oxide (GO). Functionalization was performed by HA-SP, where HA serves as the target molecule and spiropyran constructs the whole composition as fluorescent material. Final we synthesized spiropyran conjugated polyethylene glycol (PEG). This fluorescent biomaterial coated PS bead. This fluorescent biomaterials are clearly indicates that there is no fluorescence of SP form in the cell. But after illumination, these cells with UV light for 2s, a strong red fluorescence was observed. This indicates the formation of ring-open MC form from SP form. Also indicate the cellular uptake of the developed fluorescent biomaterials by the cell where fluorescent biomaterials are seen to present within the cytoplasm. Therefore, our exploitation fluorescent biomaterial can be a novel applicant as a fluorescent probe to identify the cancer cell along with a potential biocompatibility.

Article ID: 50244
Title: Multifunctional glazes by using nanotechnology

Session 8: Advances in Physics (CAP-S)

Article ID: 80086
Title: Experimental tests on the lifetime asymmetry
Name: Zhi-Qiang Shi
Affiliation: Shaanxi Normal University
E-mail: zqshi@snu.edu.cn

ABSTRACT
The experimental test problem of the left-right polarization-dependent lifetime asymmetry is discussed. It shows that the existing experiments cannot demonstrate the lifetime asymmetry to be right or wrong after analyzing the measurements on the neutron, the muon and the tau lifetime, as well as the g-2 experiment. However, It is pointed out emphatically that the SLD and the E158 experiments, the measurements of the left-right integrated cross section asymmetry in Z boson production by e+ e- collisions and by electron-electron Moller scattering, can indirectly demonstrate the lifetime asymmetry. In order to directly demonstrate the lifetime asymmetry, we propose some possible experiments on the decays of polarized muons. The precise measurement of the lifetime asymmetry could have important significance for building a muon collider, also in cosmology and astrophysics. It would provide a sensitive test of the standard model in particle physics and allow for exploration of the possible V+A interactions.

Article ID: 80057
Title: Thermonuclear plasma steady states generation
Name: Fisenko Stanislav
Affiliation: Rusthermosynthesis JSC
E-mail: stanislavfisenko@yandex.ru

ABSTRACT
This report is a systematic and complemented summary...
of the earlier published works by the authors [1,2,3,4]. The concept of gravitational radiation as a radiation of one level with the electromagnetic radiation is based on theoretically proved and experimentally confirmed fact of existence of electron’s stationary states in own gravitational field, characterized by gravitational constant K=1042G (G — Newtonian gravitational constant) and by irremovable space-time curvature. The received results strictly correspond to principles of the relativistic theory of gravitation and the quantum mechanics. The given work contributes into further elaboration of the findings considering their application to dense high-temperature plasma of multiple-charge ions. This is due to quantitative character of electron gravitational radiation spectrum such that amplification of gravitational radiation may take place only in multiple-charge ion high-temperature plasma.

Article ID: 80114
Title: Advanced Concept Ramjet Propulsion System Utilizing In-Situ Positron Antimatter Derived From Ultra-Intense Laser With Fundamental Performance Analysis
Name: Robert LeMoyne
Affiliation: Independent
E-mail: rlemoyne07@gmail.com

ABSTRACT
The fundamental performance analysis of an advanced concept ramjet propulsion system using antimatter is presented. Antimatter is generated by ultra-intense laser pulses incident on a gold target. The scientific foundation for the generation of antimatter by an ultra-intense laser was established in the early 1970’s and later demonstrated at Lawrence Livermore National Laboratory from 2008 to 2009. Antimatter on the scale of 2*10^10 positrons were generated through a ~1ps pulse from the Lawrence Livermore National Laboratory Titan laser that has an intensity of ~10^20W/cm^2. The predominant mechanism is the Bethe-Heitler process, which involves high-energy bremsstrahlung photons that yield electron-positron pairs as a consequence of the Bethe-Heitler process, which predominates the Trident process. Given the constraints of the current and near future technology space, a pulsed space propulsion configuration is advocated for antimatter derived space propulsion, similar in concept to pulsed radioisotope propulsion. Antimatter is generated through an ultra-intense laser on the scale of a Titan laser incident on a gold target and annihilated in a closed chamber, representative of a combustion chamber. Upon reaching a temperature threshold, the closed chamber opens, producing a pulse of thrust. The implication of the pulsed space propulsion antimatter architecture is that the energy source for the antimatter propulsion system can be decoupled from the actual spacecraft. In contrast to conventional chemical propulsion systems, which require storage of its respective propulsive chemical potential energy, the proposed antimatter propulsion architecture may have the energy source at a disparate location from the spacecraft. The ultra-intense laser could convey its laser energy over a distance to the actual spacecraft equipped with the positron antimatter pulsed space propulsion system. Hydrogen is considered as the propulsive fluid, in light of its low molecular weight. Fundamental analysis is applied to preliminarily define the performance of the positron antimatter derived pulsed space propulsion system. The fundamental performance analysis of the antimatter pulsed space propulsion system successfully reveals the architecture is viable for further evaluation.

Article ID: 80069
Title: Information Mechanics
Name: John Haller
Affiliation: CCC Information Services
E-mail: jlhaller@gmail.com

ABSTRACT

In the governing thought, I find an equivalence between the classical information in a quantum system and the integral of that system's energy and time, specifically \[I = \int 2\epsilon dt / h \], in natural units. I solve this relationship in four ways: the first approach starts with the Schrödinger Equation and applies the Minkowski transformation; the second uses the Canonical commutation relation; the third through Gabor’s analysis of the time-frequency plane and Heisenberg’s uncertainty principle; and lastly by quantizing Brownian motion within the Bernoulli process and applying the Gaussian channel capacity. In support I give two examples of quantum systems that follow the governing thought: namely the Gaussian wave packet and the electron spin. I conclude with comments on the discretization of space and the information content of a degree of freedom.

Article ID: 80015
Title: Gravito – Electric Power Generation
Name: Roger Ellman
Affiliation: The-Origin Foundation, Inc.
E-mail: RogerEllman@The-Origin.org

ABSTRACT

It is now possible to deflect gravitational action away from an object so that the object is partially levitated. That effect makes it possible to extract energy from the gravitational field, which makes the generation of gravito-electric power technologically feasible. Such plants would be similar to hydro-electric plants and would have advantages of not needing fuel and not polluting the environment. However, gravito-electric plants could be much smaller than hydro-electric plants; their location would not be restricted to suitable water elevations, and the plants and their produced energy would be much less expensive. Gravito-electric power can be placed into operation now. It can replace all existing nuclear and fossil fuel plants, and would essentially solve the problem of global warming to the extent it is caused by fossil fuel use. The physics development is comprehensively presented. That is followed by the engineering design. [Patent Pending (P), January 13, 2011, USPTO #13/199,867.]

Article ID: 80178
Title: Gravitation in Flat Space-Time and General Relativity
Name: Walter Petry
Affiliation: Universitaet Duesseldorf
E-mail: wpetry@meduse.de

ABSTRACT

A covariant theory of gravitation in flat space-time is stated and compared with general relativity. The results of the theory of gravitation in flat space-time and of general relativity agree for weak gravitational fields to low approximations. For strong fields the results of the two theories deviate from one another. Flat space-time theory of gravitation gives under some natural assumptions non-singular cosmological models with a flat space. The universe contracts to a positive minimum and then it expands for all times. Shortly, after the minimum is reached, the cosmological models of two theories approximately agree with one another if models in general relativity with zero curvature are considered. A flat space is proved by experiments.

Article ID: 80160
Title: Structure and curvatures of trajectories of a 2D log-gas
Name: Mauricio Pato
Affiliation: Universidade de Sao Paulo, Brazil
E-mail: mpato@if.usp.br

ABSTRACT
A model is constructed to study the statistical properties of irregular trajectories of a log-gas whose positions are those of the complex eigenvalues of the unitary Ginibre ensemble. It is shown that statistically the trajectories form a structure that reveals the eigenvalue departure positions. It is also shown that the curvatures of the ensemble of trajectories are Cauchy distributed.

Article ID: 80077
Title: Some New Particles Beyond the Standard Model
Name: hesham mansour
Affiliation: Cairo University
E-mail: mansourhesham@yahoo.com

ABSTRACT
In this work a simulated B-L model at Large Hadrons Collider is presented using Monte Carlo simulation software. B-L model is one of the scenarios proposed to add an extension of the standard models. B-L model predicts the existence of three new particles at the LHC. They are a new neutral massive gauge boson, three heavy neutrinos and a heavy Higgs boson.

Article ID: 80197
Title: Planck’s constant as adiabatic invariant characterized by Hubble's and cosmological constants.
Name: Anton Lipovka
Affiliation: Sonora University
E-mail: aal@cifus.uson.mx

ABSTRACT
Within the framework of the Einstein – Cartan – Shroedinger program with non-symmetric connections, the Planck constant is calculated from first principles (from geometry of our Universe), as the adiabatic invariant of free electromagnetic field on the Riemann – Cartan manifold. The Planck constant, calculated with actually measured cosmological parameters, coincide with that one, measured in laboratory with precision up to the second digit. The non-local generalization of quantum theory is suggested. The fundamental sense of the Quantum Theory is discussed, and physical sense of the cosmological constant is revealed. Within the mentioned framework, the quantum theory is naturally unified with gravity.

Article ID: 80208
Title: Electron Correlation in High Temperature Cuprates
Name: Takashi Yanagisawa
Affiliation: National Institute of Advanced Industrial Science
E-mail: t-yanagisawa@aist.go.jp

ABSTRACT
Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d/p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion Ud by using the variational Monte Carlo method. The ground state is insulating when Ud is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference εp and εd is increased.

Article ID: 80218
Title: Magnetic Properties and Hyperfine Interactions in M-Type BaFe12-2xMoxZnxO19 Hexaferrites
Name: Sami Mahmood
Affiliation: The University of Jordan
E-mail: s.mahmood@ju.edu.jo

ABSTRACT
A series of M-Type barium hexaferrites with the general composition BaFe12-2xMoxZnxO19 were synthesized at 1100 °C by a simple wet chemical mixture route. The properties of the prepared samples were examined by X-ray diffraction, scanning electron microscopy, vibrating sample magnetometry, and Mössbauer spectroscopy. The diffraction patterns for all samples were found to agree well with the standard pattern of BaFe12O19 hexaferrite with no extraneous diffraction peaks. The products formed as well crystallized hexagonal platelet-like particles while the EDS measurements revealed the stoichiometric cationic ratios of the prepared samples. The spectral variations elucidated by Mössbauer spectroscopy were utilized to determine the different cation preferential site occupations as a function of x. Finally, the saturation magnetizations, magnetic anisotropies, and the anisotropy fields, determined from the magnetic measurements, showed consistency with the relative subspectral M&sand amp;#246;ssbauer intensities and the single ion model for the anisotropy constant.

Article ID: 80245
Title: Laser-plasma source of tunable mid-infrared pulses
Name: Nikolay Vvedenskii
Affiliation: University of Nizhny Novgorod
E-mail: vved@appl.sci-nnov.ru
ABSTRACT
We examine a new method for generation of the coherent few-cycle mid-infrared pulses. The method utilizes the gas ionization by ultrashort incommensurate two-color laser pulses. These incommensurate two-color pulses contain the fields at two different frequencies. One of the frequencies is detuned from the doubled value of the other one. Such incommensurate pulses can be obtained with the use of the nonlinear crystal (for example, BBO or KDP) or with the use of the optical parametric amplifier. In the latter case, the main (in the respect of intensity) field component has greater central frequency than the weaker field has; and the frequency of the weaker field can be reasonably easy tuned around the halved value of central frequency of the main field, which stays fixed. We calculate the electron current which is excited by such two-color pulse in a gas medium during ionization through the use of the semiclassical approach both analytically and numerically and find out that the low-frequency component of that current can have central frequency in the mid-infrared range, which can be controlled by tuning the frequency of the weaker optical field. The full-dimensional simulations based on the quantum-mechanical approach (the solution of the 3D time-dependent Schrödinger equation) support the results obtained from the semiclassical approach. We estimate energy radiated by that current and discuss the possibilities of employing the phenomenon for creating the tunable source of coherent few-cycle mid-infrared pulses. This work was supported by the Government of the Russian Federation (Agreement No. 14.B25.31.0008) and the Russian Foundation for Basic Research (Grant No. 14-02-00847).

Article ID: 80211
Title: Gradient-Index Optical Cavity and Quantum Oscillator System
Name: Pi-Gang Luan
Affiliation: National Central University
E-mail: pgluan@dop.ncu.edu.tw

ABSTRACT
In this work we propose to find the high-Q cavity modes of a circular dielectric disk cavity having a dielectric distribution of parabolic form in the radial direction by considering their correspondence with the eigenstates of a 2D quantum harmonic oscillator system characterized by the radial and azimuthal (angular momentum) quantum numbers. Numerical simulations confirm the predictability of this strategy and give us their discrepancies. Both the TE and TM cavity modes are studied and the reasons for their different performances are explained.

Article ID: 80210

Title: Twisted-Dielectric-Rod Arrays as Effective Chiral Photonic Crystal
Name: Zhang XueEr
Affiliation: National Central University
E-mail: w0005151@hotmail.com

ABSTRACT
A new kind of chiral photonic crystal (CPC) consisted of dielectric materials which has significantly optical activity is proposed. This CPC is formed by a twisted multilayer structure; each layer is a 2D photonic crystal consisted of cross-shaped dielectric rods of appropriate rotation angle. Unlike other chiral metamaterials usually made of metallic structures, this new design has the advantage of avoiding the absorption problem while keeping its optical activity at a high enough level. This structure can be used as an optical rotator.

Article ID: 80239
Title: Maxwell's Equations as the Basis for Model of Atoms
Name: Milan Perkovac
Affiliation: The First Technical School Tesla
E-mail: milan@drivesc.com

ABSTRACT
Classical physics a century ago couldn't explain many atomic physical phenomena. Now the situation has changed. It's because within the framework of classical physics with the help of Maxwell's equations we can derive Schrödinger equation, which is the foundation of quantum physics. The equations for energy, momentum, frequency and wavelength of the electromagnetic wave in the atom are derived using the model of atom by analogy with the transmission line. The action constant $A_0=(\mu_0/\varepsilon_0)^{1/2}s_0^2e^2$ is a key term in the above mentioned equations. Besides the other well-known constants, the only unknown constant in the last expression is a structural constant of the atom s_0. We have found that the value of this constant is 8.27756 and that it shows up as a link between macroscopic and atomic world. After calculating this constant we get the theory of atoms based on Maxwell's and Lorentz equations only. This theory does not require Planck constant h, which is replaced with theoretically derived action constant A_0, while the replacement for fine structure constant α-1 is theoretically derived expression $2s_0^2=137.036$. This way, the structural constant s_0 is replacing both constants, h and α. This paper also defines the stationary states of atoms and shows that the maximal atomic number is equal to $Z_{max}=137$. The presented model of the atoms covers three of the four fundamental interactions, namely the electromagnetic, weak and strong interactions.
Part V Instructions for Presentations

Devices Provided by the Conference Organizing Committee:

- Laptops (with MS-office & Adobe Reader)
- Projectors & Screen
- Laser Sticks

Materials Provided by the Presenters:

- PowerPoint or PDF files

Duration of each Presentation:

- Regular Oral Session: 15 Minutes of Presentation, 5 Minutes of Q & A
- Plenary Speech: 40 - 45 Minutes of Presentation, 5 Minutes of Q & A
Part VI Hotel Information

About Hotel

Grand Mercure Baolong Shanghai is close to major shopping and cultural centers such as Wu Jiao Chang Commercial precinct, Knowledge & Innovation Community Business Park and Fudan University. This classical hotel with warm and elegant décor, captures the essence of the old and new Shanghai. Conference facilities, restaurants and bars, healthy club & recreation centre, ideal for business and holiday travelers convenience, comfort and relaxation.

Address: 180 Yixian Road, Shanghai 200434, P.R. China
URL:
http://www.grandmercurebaolong.com/En/
Tel: (+ 86 21) 3505 9666
Fax: (+ 86 21) 5663 2710
Email: info@grandmercurebaolong.com

How to Get to the Hotel

20km to the Hongqiao Airport (距离虹桥机场20公里)
50km to the Pudong International Airport (距离浦东国际机场50公里)
10km to the city center (距离市中心10公里)
8km to the railway station (距离火车站8公里)

For non-Chinese author, please show the following info to the driver if you take a taxi:

请送我到：中国上海逸仙路180号 上海宝隆美爵酒店
Contact Us

SCET Organizing Committee

Secretary: Ms. Rollin

Telephone: +86-151 7233 0844

E-mail: scet@engii.org