Table of Contents

Part I CET 2016 Conference Schedule ... 1

Part II Invited Speeches .. 2
 Invited Speech 2: Effects of Solute Gas Transport on Controlling Pore Shape in Solid 3
 Invited Speech 3: Design and performance evaluation of piezo-driven synthetic jet devices Luigi de Luca and Matteo Chiatto ... 3
 Invited Speech 4: Acoustic Streaming Eddies in Ultrasonic Nano Manipulations 4
 Invited Speech 6: Parametric Study on a Caisson Based OWC Wave Energy Converting System 4

Part III Technical Sessions .. 6
 Technical Session 1: Engineering and Technology I ... 6
 Technical Session 2: Engineering and Technology II .. 8

Part IV Abstracts... 10
 Technical Session 1: Engineering and Technology I ... 10
 Technical Session 2: Engineering and Technology II .. 17

Part V Instructions for Presentations ... 22

Part VI Hotel Information ... 23

Contact Us .. 24
Part I CET 2016 Conference Schedule

Time: October 21-October 23, 2016
Location: Guangdong Hotel (Shanghai), Shanghai, China

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 21</td>
<td>14:00-17:00</td>
<td>Lobby, Guangdong Hotel (Shanghai)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Registration</td>
</tr>
<tr>
<td>October 22</td>
<td>08:30-12:00</td>
<td>Kapok Room (木棉厅)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Invited Session:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Eng Chew, Prof. Peng-Sheng Wei, Prof. Stanislaw Migorski, Prof. Luigi de Luca, Prof. Junhui Hu, Prof. Hsien-Hua Lee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chair: Prof. Peng-Sheng Wei</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group Photo & Coffee Break: 10:30-10:50</td>
</tr>
<tr>
<td></td>
<td>12:00-13:30</td>
<td>Lunch, Shanghai Room [上海厅] 2nd Floor</td>
</tr>
<tr>
<td>October 23</td>
<td>14:00-18:00</td>
<td>Kapok Room (木棉厅)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Session 1: Engineering and Technology I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chair: Prof. Mihaly Pituk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group Photo & Coffee Break: 16:00-16:15</td>
</tr>
<tr>
<td></td>
<td>18:00-19:30</td>
<td>Dinner, Shanghai Room [上海厅] 2nd Floor</td>
</tr>
<tr>
<td>October 24</td>
<td>08:30-12:00</td>
<td>Kapok Room (木棉厅)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Session 2: Engineering and Technology II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chair: TBD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group Photo & Coffee Break: 10:00-10:15</td>
</tr>
<tr>
<td></td>
<td>12:00-13:30</td>
<td>Lunch, Shenzhen Room [深圳厅] 2nd Floor</td>
</tr>
<tr>
<td>October 24</td>
<td>08:00-18:00</td>
<td>One-day Tour (at own expense)</td>
</tr>
</tbody>
</table>
Part II Invited Speeches

Invited Speech 1: Industry-based engineering and business entrepreneurship education: a Chinese Model

Speaker: Prof. Eng Chew, University of Technology Sydney, Australia
 Prof. Ping Shuai, Shanghai University, China
Time: 08:30-09:10, Saturday Morning, October 22, 2016
Location: Kapok Room (木棉厅), 4th Floor, Guangdong Hotel (Shanghai)

Abstract
In today’s increasingly digitalized world, entrepreneurial innovations of any type, whether product, service or business model, are often the outcomes of collaboration by cross-disciplinary experts. To educate the next generation of entrepreneurs, then, requires higher education institutions to not only engage externally with select industry partners (entrepreneurs) but also build internal collaboration between different disciplines, such as engineering and business, to co-develop and co-create entrepreneurship education programs in line with industry needs. These programs will teach young college students to learn the art and science of entrepreneurship by “doing”. They will enable cross-disciplinary students to self-select forming a collaborative team to “innovate” by solving a real-world problem identified by an industry partner. The students will learn the practice of entrepreneurship by acting as an “entrepreneur team” who, under the mentorship of the industry partner and a faculty, will attempt to develop and commercialize the innovative solution by progressing through the typical end-to-end innovation processes of ideation, selection (prototyping and/or proof-of-concept), implementation, commercialization and review (learning). Each “entrepreneur team’s” performance is proactively monitored, analysed and shared amongst the students by the faculty and industry mentor. Both success and failure are regarded as valuable learning experiences and represented as contrasting exemplars of “good” and “bad” entrepreneurial practices respectively. For business students the program offers them exposure to learn new technological ideas from engineering students for co-solving real-world problems. Conversely, engineering students learn from the business students how to design business model and commercialize their technological ideas. Importantly, the program offers the industry partners access to diverse skilled resources for solving their problems and potentially creating a new business from the solution. This keynote describes a case study research of such an entrepreneurship education program being run by Shanghai University.
Invited Speech 2: Effects of Solute Gas Transport on Controlling Pore Shape in Solid

Speaker: Prof. Peng-Sheng Wei, National Sun Yat-Sen University, Chinese Taipei
Time: 09:10-09:50, Saturday Morning, October 22, 2016
Location: Kapok Room (木棉厅), 4th Floor, Guangdong Hotel (Shanghai)

Abstract
Porosity is one of the most serious problems commonly occurring in weldments. In order to remove and control porosity, understanding its formation is important. A pore formed in solid is a consequence of a bubble nucleated by supersaturation and entrapped by a solidification front. By accounting for transport of mass, momentum and physico-chemical equilibrium of solute gas across the bubble cap, it is found that pore formation can be categorized into three cases due to different mechanisms responsible for directions of solute gas transport. Different directions of solute gas transport influence the variations of gas pressure in the pore and its pore shape with time in order to satisfy balances of pressures, physico-chemical equilibrium at the top cap, and the equation of state in the pore. This study has provided an exploratory and general analysis for controlling pore formation in solids.

Invited Speech 3: Design and performance evaluation of piezo-driven synthetic jet devices Luigi de Luca and Matteo Chiatto

Speaker: Prof. Luigi de Luca, University of Naples Federico II, Italy
Time: 09:50-10:30, Saturday Morning, October 22, 2016
Location: Kapok Room (木棉厅), 4th Floor, Guangdong Hotel (Shanghai)

Abstract
In the last few years synthetic jet actuators have gained much interest among flow control techniques due to their short response time, high jet velocity and absence of traditional piping, that matches the requirements of reduced size and low weight. A synthetic jet is generated by the membrane oscillation (generally driven by a piezo-electric element) in a relatively small cavity, producing periodic cavity pressure variation associated to cavity volume change. The high pressure air exhausts through an orifice, converting membrane elastic energy in jet kinetic energy. This review paper faces the development of a validated lumped-element modeling (LEM) as a practical tool to design and manufacturing actuators. LEM can predict quickly device performances such as frequency response in terms of membrane displacement, cavity pressure and jet velocity, as well as efficiency of energy conversion of input Joule power into useful kinetic power of air jet. Actuator performance is analyzed also by varying
Invited Speech 4: Acoustic Streaming Eddies in Ultrasonic Nano Manipulations

Speaker: Prof. Junhui Hu, Nanjing University of Aeronautics and Astronautics, China
Time: 10:50-11:30, Saturday Morning, October 22, 2016
Location: Kapok Room, 4th Floor, Guangdong Hotel (Shanghai)

Abstract
Nano manipulation technology has wide potential applications in the micro/nano measurement and assembling, fabrication of high-end microelectronic and photonic devices, high-sensitivity sensing, treatment of biomedical samples, etc. Ultrasonic nano manipulation is a new manipulating technology which emerged in 2012. It has the merits such as low temperature rise at the manipulating area, diversified manipulating functions, capability to integrate multiple manipulating functions in one device, compact and light device structure, etc. So far it has been utilizing the acoustic streaming eddies to trap, position, rotate, orientate and concentrate nanoscale entities. Proper acoustic streaming eddies are the key to implement and improve various nano manipulation functions. After proposing the ultrasonic methods for nano manipulations in recent years, the author’s group has been researching the features of the acoustic streaming fields for various nano manipulations, and the effective methods to generate and control the acoustic streaming eddies. In this report, we demonstrate the features of the acoustic streaming eddies for the contact-type and noncontact-type nano trapping, nano rotary driving and nano concentration, and give the methods to generate and control the acoustic streaming eddies.

Invited Speech 6: Parametric Study on a Caisson Based OWC Wave Energy Converting System

Speaker: Prof. Hsien-Hua Lee, National Sun Yat-sen University, China
Time: 11:30-12:10, Saturday Morning, October 22, 2016
Location: Kapok Room, 4th Floor, Guangdong Hotel (Shanghai)

Abstract
This study uses a numerical method to analyze the proposed model structure. Before the parametric analysis, an pre-analysis to make sure the analytical results are accountable, a verification analysis was performed. The results
found are compared well with the limited experimental findings of Goda et al. and it is very encouraging to find that for the proposed method as an alternative for green energy developments, as long as an appropriate design is performed, an OWC combined with breakwater structure may provide an alternative for green energy system utilized in a harbor area. From the results of the first stage of parameter analysis that the size of the openings of the cell of converting system is variable, a traditional full opened cell is not necessary the most efficient design for the wave power conversion in terms of the variations of air pressure inside the cell and air speed through the outlet orifice that will drive the electricity power generator.
Part III Technical Sessions

Technical Session 1: Engineering and Technology I

Session Chair: Prof. Mihály Pituk, University of Pannonia, Hungary
Kapok Room (木棉厅), 4th Floor 14:00-18:00, Saturday Afternoon, October 22, 2016

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80097</td>
<td>Current Trends in Competency Based Education</td>
<td>Ruben Morales-Menendez</td>
<td>Tecnologico de Monterrey</td>
</tr>
<tr>
<td>80090</td>
<td>XRD doping control of light-emitting cBN with a large size mismatch between the dopant and intrinsic atoms</td>
<td>Elena Shishonok</td>
<td>Belarussian State Technological University</td>
</tr>
<tr>
<td>80054</td>
<td>Hyperbolic Quaternion Reformulation of Maxwell-type Equations of Fluids</td>
<td>Suleyman Demir</td>
<td>Anadolu University</td>
</tr>
<tr>
<td>80057</td>
<td>Atomic vs.quantum dot open shell spectra</td>
<td>Jacob Katriel</td>
<td>Technion - Israel Institute of Technology</td>
</tr>
<tr>
<td>80040</td>
<td>Dynamic Programming to Identification Problems</td>
<td>Nina Subbotina</td>
<td>Krasovskii Institute of Mathematics and Mechanics</td>
</tr>
<tr>
<td>80092</td>
<td>Lyapunov Exponents of the Solutions of a Perturbed System of Ordinary and Delay Differential Equations</td>
<td>Mihály Pituk</td>
<td>University of Pannonia, Hungary</td>
</tr>
<tr>
<td>80093</td>
<td>On differentiability of solutions with respect to the delay function in functional differential equations</td>
<td>Ferenc Hartung</td>
<td>University of Pannonia</td>
</tr>
<tr>
<td>80099</td>
<td>Methodology for the Study of the Quality of CFRP Dry Drilling based on Macrogateometrical and Dimensional Deviations</td>
<td>Jorge Salguero</td>
<td>University of Cadiz</td>
</tr>
<tr>
<td>80100</td>
<td>Reverse Engineering based Methodology for Redesigning Contour Milling Tools</td>
<td>Ana Pilar Valerga Puerta</td>
<td>Universidad de Cádiz</td>
</tr>
<tr>
<td>80031</td>
<td>Theoretical and engineering approach to human power ornitopter design</td>
<td>Ilya Zverkov</td>
<td>Khristianovich Institute of Theoretical and Applied Mechanics</td>
</tr>
<tr>
<td>Time</td>
<td>Session Title</td>
<td>Presentation Title</td>
<td>Speaker(s)</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>16:00-16:15</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00-16:15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80050</td>
<td>Numerical Research on Flow Field of Water-jet Propeller at Different Speed</td>
<td>Wang Xuebao</td>
<td>Jiangsu University</td>
</tr>
<tr>
<td>80018</td>
<td>Analysis of the velocity non-uniformity in water jet inlet duct</td>
<td>Shen Zhanhao</td>
<td>Jingjiang Colledge of Jiangsu University</td>
</tr>
<tr>
<td>80087</td>
<td>Steep wave effects on a large-diameter vertical circular cylinder</td>
<td>Injun Yang</td>
<td>Inha University</td>
</tr>
<tr>
<td>80088</td>
<td>A study on the added resistance and wake distribution of a ship in waves using CFD</td>
<td>Jeongho Park</td>
<td>Inha University</td>
</tr>
<tr>
<td>80089</td>
<td>Development of a dynamic positioning system using adaptive acceleration feedback</td>
<td>Soonseok Song</td>
<td>Inha University</td>
</tr>
<tr>
<td>80065</td>
<td>Control of back-to-back inverters exciting electric generators of different types in parallel connection</td>
<td>Artur Bejger</td>
<td>Maritime University of Szczecin</td>
</tr>
<tr>
<td>80052</td>
<td>Characteristics of Mechanical and Electrical Power Transmission for Small-Scaled Wind Turbine</td>
<td>Kyujin Lee</td>
<td>Dept. of Mech. Eng, Changwon National Univ., Changwon, Republic of Korea</td>
</tr>
<tr>
<td>80049</td>
<td>Optimal Wind Farm Micro-Siting Models With Risk Benefit Analysis</td>
<td>Peng-Yeng Yin</td>
<td>National Chi Nan University</td>
</tr>
</tbody>
</table>
Technical Session 2: Engineering and Technology II

Session Chair: TBD
Kapok Room (木棉厅), 4th Floor
08:30-12:00, Sunday Morning, October 23, 2016

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80103</td>
<td>Mathematical approaches to the structural analysis and formalization of woven fabrics</td>
<td>Otabek Kasimov</td>
<td>Tashkent Institute of Textile and Light Industry</td>
</tr>
<tr>
<td>80060</td>
<td>The Multi-Service Center Decision Problem is NP-Complete for Split Graphs</td>
<td>Toshimitsu Anzai</td>
<td>Tohoku University</td>
</tr>
<tr>
<td>80086</td>
<td>Exact null-controllability of interconnected abstract evolution boundary control equations</td>
<td>Benzion Shklyar</td>
<td>Holon Institute of Technology, Israel</td>
</tr>
<tr>
<td>80075</td>
<td>Electrode Wear in Resistance Spot Welding of Zinc-Coated Steel Sheets</td>
<td>DHEERENDRA DWIVEDI</td>
<td>Indian Institute of Technology Roorkee</td>
</tr>
<tr>
<td>80071</td>
<td>Design Parametric Study for the Flow of R-407C inside a Capillary Tube</td>
<td>Ravi Kumar</td>
<td>Indian Institute of Technology Roorkee</td>
</tr>
<tr>
<td>80056</td>
<td>3D Software Technology, Applicable in Elaboration of the Spatial Face Gear Drives for Incorporation into Robot Systems</td>
<td>Emiliya Abadzhieva</td>
<td>Akita University</td>
</tr>
<tr>
<td>80059</td>
<td>Development of an Ultrasonic Motor that Uses an Inchworm Shaped Deformation of a Metallic plate</td>
<td>Akihiro Naganawa</td>
<td>Akita University</td>
</tr>
</tbody>
</table>

10:00-10:15 Coffee Break

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>80072</td>
<td>Research on the Product Derivation Method under the Interaction Design Thinking</td>
<td>Guangwei Liang</td>
<td>Beihang University</td>
</tr>
<tr>
<td>80076</td>
<td>Cerium Separation from Light Rare Earth Concentrate by Liquid-Liquid Extraction</td>
<td>Thiago Formiga</td>
<td>Centro de Desenvolvimento da Tecnologia Nuclear – CDTN, Brazil</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Author</td>
<td>Institution</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>80077</td>
<td>Study of Separation of Zirconium and Hafnium by Solvent Extraction Technique</td>
<td>Carlos Morais</td>
<td>Centro de Desenvolvimento da Tecnologia Nuclear – CDTN, Brazil</td>
</tr>
<tr>
<td>80081</td>
<td>Production of the modified liquid glass in the processing of kaolinitic clay</td>
<td>Sarsenbay Gulfiya</td>
<td>Institute of Metallurgy and Beneficiation, JSC, Science and Education Ministry of the Republic of Kazakhstan</td>
</tr>
<tr>
<td>80022</td>
<td>Cobalt Electrowinning Development for SX-EW Process</td>
<td>Jianming Lu</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>80062</td>
<td>Study of thermal and acoustic properties of casted metal-ceramic composite foams</td>
<td>Katarzyna Gawdzinska</td>
<td>Maritime University of Szczecin</td>
</tr>
</tbody>
</table>
Part IV Abstracts

Technical Session 1: Engineering and Technology I

ID: 80097
Title: Current Trends in Competency Based Education
Name: Ruben Morales-Menendez
Affiliation: Tecnologico de Monterrey
Email: rmm@itesm.mx

Abstract
The shortage of individuals with the abilities to perform a job position successfully demands innovative educational approaches. Competency Based Education (CBE) is a methodology that focuses on endowing students with the skills demanded by the industries and evaluates them regarding what they are able to do. A bank of competencies that students must acquire in a university academic program was discussed. Occupational trends as well as associated skills demands were detected. This research could be a source of practical knowledge for those organizations seeking to understand CBE foundations and for those wishing to initiate their path through this global educational trend.

ID: 80090
Title: XRD doping control of light-emitting cBN with a large size mismatch between the dopant and intrinsic atoms
Name: Elena Shishonok
Affiliation: Belarussian State Technological University
Email: eshishonok@tut.by

Abstract
Cubic boron nitride (cBN) as the outstanding representative of the family of semiconducting wide bandgap nitrides and the closest analogue of diamond, is produced and investigated. XRD method of doping control of cBN as doped with impurities of large atomic sizes, is suggested. The larger an atomic size mismatch between doping and intrinsic atoms of a semiconductor’s crystal lattice the stronger its response through own strains and distortions. The distortions are expected to be notable in the case of the smallest intrinsic atoms of cBN and diamond. The data of XRD (CuKα) analysis of the light-emitting cBN in form of the cBN:RE single phase micropowders, doped with various rare-earth elements (RE) in different concentrations under high pressure conditions, are represented. The cBN:RE micropowders showed discrete photoluminescence spectra in IR-, red and green spectral ranges which are attributed to the intra-electronic transitions of RE3+ ions, located in cBN crystal lat-tice. The locations of the RE3+ ions in cBN crystal lattice are discussed. Extra-splits (as the additional ones to the α1-α2-splits on CuKα) of basic peaks for cBN in XRD patterns of the cBN:RE, were discov-ered and analyzed using appropriate computer programs. As established, crystal lattice of cBN due to incorporation of RE3+ ions in dependence on the ions’ size and their concentrations in cBN, is non-uniformly and controllably distorted. Results of the present work can be useful to manufacture cBN with predictable functional properties, as well as for in situ doping control of cBN and diamond.

ID: 80054
Title: Hyperbolic Quaternion Reformulation of Maxwell-type Equations of Fluids
Name: Suleyman Demir
Affiliation: Anadolu University
Email: sudemir@anadolu.edu.tr
Abstract
The hyperbolic quaternions are 4-dimensional and non-associative mathematical structures. In this paper, after a brief summary about algebra of the hyperbolic quaternions, a new model is proposed for the reformulation of Maxwell-type equations of compressible fluids. The relevant field equations are presented by this type of quaternions. These equations are given in a compact, simple and elegant way. Moreover, the fluid wave equation is expressed in similar form to electromagnetic and gravitational counterparts. Derived equations are compared with their vectorial, biquaternionic, and octonionic representations.

ID: 80057
Title: Atomic vs. quantum dot open shell spectra
Name: Jacob Katriel
Affiliation: Technion - Israel Institute of Technology
Email: jkatriel@technion.ac.il

Abstract
Multi-electron quantum dots are frequently discussed as analogues of atomic systems. We compare the dependence of the energy level splitting on the strength of the one-body attractive potential in these two families of systems. For an atomic system,

\[\mathcal{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{i=1}^{N} \frac{Z}{r_i} + \sum_{i<j}^{N} \frac{1}{r_{ij}}, \]

combination of the Hellmann-Feynman and the virial theorem yields

\[L = 2 \frac{dE}{dz} \quad \text{and} \quad C = -Z^3 \frac{d^2}{dz^2} \left(\frac{E}{Z^2} \right), \]

where \(E, L \) and \(C \) are the total energy and the contributions of the nuclear attraction and the inter-electronic repulsion, respectively.

For a confining quantum dot we write the Hamiltonian in the form

\[\mathcal{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 + \sum_{i=1}^{N} \left(\frac{1}{R} \right)^k + \sum_{i<j}^{N} \frac{1}{r_{ij}}, \]

that allows a convenient interpolation between the harmonic \((k = 2) \) and the infinite spherical well \((k \to \infty) \). Here, a combination of the Hellman-Feynman and the virial theorem yields

\[H = -\frac{1}{k} R \frac{dE}{dR}, \]

\[C = \frac{k+2}{k} R^{2-k} \frac{d}{dR} \left(R^{2k} E \right), \]

where \(H \) is the contribution of the one body attraction. We note in passing that the atomic case is obtained as a special case by setting \(k = -1 \) and \(R = -Z \). In the harmonic case \(H = -\frac{1}{2} R \frac{dE}{dR} \) and \(C = 2 \frac{d}{dR} (RE) \), and \(R = \frac{\sqrt{2}}{\omega} \), where \(\omega \) is the oscillator frequency.

For the infinite spherical well \(H = 0 \) and

\[C = \frac{1}{R} \frac{d}{dR} (R^2 E), \]

where \(R \) is the well radius.

Application of these relations indicates an inevitable reversal of the difference of the inter-electronic repulsions as a function of \(R \), in related pairs of states in atomic systems, that are degenerate in the absence of inter-electronic repulsion (such as different multiplicity states corresponding to a common configuration). This is a consequence of the fact that in such related pairs of states the ratio \(\frac{\Delta E}{Z^2} \) vanishes at both \(Z \to \infty \) and \(Z = Z_c \), where \(Z_c > 0 \) is some critical charge \((Z_c \leq N - 1) \).
Actually, \(\lim_{z \to \infty} \frac{\Delta C}{\Delta L} = 1 \) and \(\lim_{z \to \infty} \frac{\Delta C}{\Delta H} = -1 \).

Such a reversal does not take place in confined quantum dots. In the high confinement (weak perturbation) limit \((R \to 0)\) first order perturbation theory yields \(\lim_{R \to 0} \frac{\Delta C}{\Delta H} = k + 2 \). In the strong perturbation limit \((R \to \infty)\) we assume that \(\Delta E \sim \alpha R^{-\nu} \), hence \(\frac{\Delta C}{\Delta H} \sim k \left(\frac{2}{\nu} - 1 \right) - 2 \). Numerical evidence for the harmonic \(1^{1/3} P \) pair \((k = 2)\) suggest that \(\nu \sim \frac{2}{3} \), so \(\frac{\Delta C}{\Delta H} \sim 2 \).

ID: 80040
Title: Dynamic Programming to Identification Problems
Name: Nina Subbotina
Affiliation: Krasovskii Institute of Mathematics and Mechanics
Email: subb@uran.ru

Abstract
An identification problem is considered as inaccurate measurements of dynamics on a time interval are given. The model has the form of ordinary differential equations which are linear with respect to unknown parameters. A new approach is presented to solve the identification problem in the framework of the optimal control theory. A numerical algorithm based on the dynamic programming method is suggested to identify the unknown parameters. Results of simulations are exposed.

ID: 80092
Title: Lyapunov Exponents of the Solutions of a Perturbed System of Ordinary and Delay Differential Equations
Name: Mihály Pituk
Affiliation: University of Pannonia, Hungary
Email: pitukm@almos.uni-pannon.hu

Abstract
In this talk we will consider a perturbation of a linear system of ordinary and delay differential equations. The main result shows that if the Lyapunov exponent of a solution is finite, then it is equal to the real part of one of the eigenvalues of the unperturbed linear part of the system. If in addition the solution is positive then its Lyapunov exponent is necessarily a (real) eigenvalue of the linear part.

ID: 80093
Title: On differentiability of solutions with respect to the delay function in functional differential equations
Name: Ferenc Hartung
Affiliation: University of Pannonia
Email: hartung.ferenc@uni-pannon.hu

Abstract
In this talk we consider a class of nonlinear functional differential equations with time-dependent delay. We discuss continuous differentiability of the solution with respect to the time delay function for each fixed time value assuming natural conditions on the delay function. As an application of the differentiability result, we give a numerical study to estimate the time delay function using the quasilinearization method.

ID: 80099
Title: Methodology for the Study of the Quality of CFRP Dry Drilling based on Macrogeometrical and Dimensional Deviations
Name: Jorge Salguero
Affiliation: University of Cadiz
Email: jorge.salguero@uca.es

Abstract
Commonly, Carbon Fiber Reinforced Plastics (CFRP) aerospace elements need to be machined (drilling) for subsequent assembly operations, mainly riveting, taking a critical importance the quality requirements of the holes. Some of the adjustment defects that can be produced during the dry drilling of CFRP are related to macrogeometrical (diameter, D, and cylindricity, DC) deviations.

This paper reports on the results of a study of the influence of the cutting parameters V (cutting speed) and f (feedrate) on the D and DC deviations in the dry drilling of CFRP. A particular procedure based on plastic hole replicas has been performed. Diameters deviations were acceptable in all the cases studied. Because of this, DC is the controlling factor for accepting the drilled holes. In the studied range, lowest cutting speeds and highest feedrates have allowed obtaining the minimum cylindricity deviation.

ID: 80031
Title: Theoretical and engineering approach to human power ornitopter design
Name: Ilya Zverkov
Affiliation: Khristianovich Institute of Theoretical and Applied Mechanics
Email: zverkov@itam.nsc.ru

Abstract
The article considers the issues on preliminary calculation of human-powered ornithopter general performances. The model of “simple ornithopter” is introduced. Giving an example of simple ornithopter interaction with the environment, the formula of relation of ornithopter theoretically available propulsion to kinematic and physical parameters of its horizontal flight parameters is derived. The tasking is performed for the following stages of calculation and design of the human-powered ornithopter.

ID: 80050
Title: Numerical Research on Flow Field of Water-jet Propeller at Different Speed
Name: Wang Xuebao
Affiliation: Jiangsu University
Email: xuebao9212@163.com

Abstract
The full flow passage numerical simulation of a
contra-rotating axial water-jet propeller was performed at different speed based on CFD method. Using SST turbulent model, streamlines were obtained. Velocity characteristics at suction duct cross-sections were carefully observed for further analysis. Simulation results indicate that flow field in water-jet propeller particularly in suction pipe and front impeller is greatly affected by vehicle speed. Velocity and pressure change obviously at different speed. With the increase of speed, the flow rate of the water jet propeller increases and flow turns more complex, the lower part of the front impeller has maximum speed. Inlet velocity is always lower than cruising speed because of the hull’s boundary layer. Flow changed more fiercely in suction pipe compared to those in other parts. Flow separation occur in suction duct and a vortex is observed at upper half. Close to the axis, small vortices generated at the upper part of the shaft.

ID: 80018
Title: Analysis of the velocity non-uniformity in water jet inlet duct
Name: Shen Zhanhao
Affiliation: Jingjiang Colledge of Jiangsu University
Email: shenzhspar@126.com

Abstract
Since the pump waterjets unique advantages, it’s applied more widely. But the Inlet duct and other structures prone to particular flows. Since the inlet duct of a special structure, the velocity distribution shows non-uniformity, departing from the waterjet pump design scenarios. In this paper, waterjet pump is simulated to study its velocity non-uniform of inlet duct and to investigate the discipline of the velocity distribution. By changing the inlet boundary conditions, the corresponding velocity field is obtained, to analyze the results under different conditions. It is researched the effect of inlet duct velocity non-uniformity on water jet propulsion system.

ID: 80087
Title: Steep wave effects on a large-diameter vertical circular cylinder
Name: Injun Yang1, Tahsin Tezdogan2, Young-Gill Lee3
Affiliation: 1Dept. of Naval Architecture and Ocean Engineering, Graduate School, Inha University, Incheon, South Korea
2Dept. of Naval Architecture and Oceanand Marine Engineering, University of Strathclyde, Glasgow, UK
3Dept. of Naval Architecture and Ocean Engineering, Inha University, Incheon, South Korea
Email: kokuki8@gmail.com

Abstract
The objective of this paper is to suggest modified coefficients for estimating horizontal forces on a cylinder of large diameter in steep waves using Computational Fluid Dynamics (CFD). For those who are interested in estimating wave forces, the use of CFD as described in this paper can reduce required analysis times, providing predicted wave force values which may be useful for early stage designing. A comparison of fully- nonlinear numerical results with the Morison equation and Faltisen Newman Vinje model developed by Faltisen et al. (1995) is conducted to yield each correct co-efficient, respectively. The modified Morison equation and FNV model show good agreement with the CFD results.

ID: 80088
Title: A study on the added resistance and wake distribution of a ship in waves using CFD
Name: Jeong-Ho Park, Young-Gill Lee, In-Jun yang, Ui-Ha Kang
Affiliation: Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Republic of Korea
Email: john523933@gmail.com

Abstract
While increasing interest in eco-friendly internationally, the IMO (International Maritime Organization, IMO) has introduced EEDI (Energy Efficiency Design Index) to regulate greenhouse gas emissions of the ship from 2013. For this reason, efficiency of the vessel operation has become a major concern of shipbuilding and shipping industry. As a study on the efficiency of a ship, reducing of added resistance in waves by decreasing the reflected wave of bow has been activated. Improving the bow shape at the short-wavelength region has been primary study of added resistance. In this study, the added resistance variation according to the change of bow shape is estimated from short-wavelength region to long one. In addition, the possibility of operating performance improvement is examined by studying of the wake distribution on CFD and KVLCC2 without rudder and propeller is conjugated.

ID: 80089
Title: Development of a dynamic positioning system using adaptive acceleration feedback
Name: Soonseok Song¹, Longbin Tao², Sanghyun Kim¹
Affiliation: ¹Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Republic of Korea
²School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, United Kingdom
Email: ssssong0409@me.com

Abstract
The significant of the Dynamic Positioning (DP) system has increased with the growing number of offshore activities. A study on an adaptive acceleration controller has been conducted. In conjunction with a proportional–integral–derivative controller (PID controller), the newly developed DP system uses acceleration feedback which varies in accordance with a condition. To evaluate the station-keeping performance of the proposed DP system, time-domain simulations of a dynamically positioned vessel under environmental disturbances of current, wind, and wave loads have been carried out with the use of a DP simulator developed previously. The simulation results showed an improved station-keeping performance with regards to standard deviation and maximum values of horizontal and heading error compared to a conventional PID controller and normal acceleration feedback controller.

ID: 80065
Title: Control of back-to-back inverters exciting electric generators of different types in parallel connection
Name: Artur Bejger
Affiliation: Maritime University of Szczecin
Email: a.bejger@am.szczecin.pl

Abstract
The paper covers theoretical background and chosen experimental results for inverters working in synchronous parallel connection with two different types of electrical generators. Synchronous and asynchronous generator inverters are in back-to-back connection. Digital signal processor DSP and field-programmable gate array FPGA provide excitation of machines and maintain appropriate level of DC link voltage. Asynchronous generator is VSI driven with use of sensorless algorithm based on field oriented control machine model with discretized machine state observer, while FOC controlled inverter excites synchronous generator. Proper control of line side inverters allows smooth distribution of active and reactive power on AC side. Line side inverters can be synchronized with ship’s electrical network by means of software phase locked loop PLL.

ID: 80046
Title: Structural Design Optimization of a Small Vertical-Axis Wind Turbine for Seismic Qualification and Lightweight
Name: Choi Young Hyu
Affiliation: Dept. of Mech. Eng, Changwon National Univ., Changwon, Republic of Korea
Email: yhchoi@changwon.ac.kr

Abstract
Recently, there is a growing interest in seismic qualification of ridges, buildings and mechanical equipment worldwide due to increase in accident caused by earthquake, it causes a problem in electric energy supply. Therefore, this study performed structural design optimization using a Ge-netic Algorithm(GA) for improving seismic qualification and lightening of a small vertical axis wind turbine. The design problem is to find thickness of each part of structure to minimize seismic acceleration gain and structure weight of the wind turbine. When the Required Response Spec-trum(RRS) was entered, the maximum stress, maximum deformation, seismic acceleration gain and condition of resonance avoidance were selected as design constraints. Also, structural optimization was conducted by changing initial design variables to confirm robustness of the structural optimization results and it was observed if the structural optimization results showed good agreement. In relation to structural optimization using a GA, this study succeeded in structural optimization of a small vertical-axis wind turbine, which satisfied design constraints, had seismic qualification and was light in weight.

ID: 80049
Title: Optimal Wind Farm Micro-Siting Models With Risk Benefit Analysis
Name: Peng-Yeng Yin
Affiliation: National Chi Nan University
Email: pengyengyin@gmail.com

Abstract
The over-usage of fossil fuels has brought drastic climate changes and environmental damages to the world. The awareness of this development has gathered over 196 countries in Paris to put forward a protocol for restraining the emission of greenhouse gases. This commitment relies on an anticipation of a future rapid growth in renewable energy capacity. In the last few years, the wind energy production was growing about 30% annually worldwide. As of 2014, wind energy generation exceeded 4% of global electricity demand. The classic Mosetti’s wind farm micro-siting model aims to minimize the cost of energy (COE) considering the wake effect. However, the risk of the energy generation under the wind uncertainty has seldom been contemplated. This paper propose risk benefit analysis based approaches to deal with the variations of wind conditions while still keeping the COE as effective as that obtained by the classic Mosetti’s model. The feasibility of our model is validated through comparative performance, convergence analysis, and worst-case analysis.
Technical Session 2: Engineering and Technology II

ID: 80103
Title: Mathematical approaches to the structural analysis and formalization of woven fabrics
Name: Otabek Kasimov
Affiliation: Tashkent Institute of Textile and Light Industry
Email: otabekkasimov@gmail.com

Abstract
The present paper shows the mathematical approach of formalization of textile fabrics, based on concepts and elements of graph theory and the structural analysis of woven structures.

ID: 80086
Title: Exact null-controllability of interconnected abstract evolution boundary control equations
Name: Benzion Shklyar
Affiliation: Holon Institute of Technology, Israel
Email: bshklyar@netvision.net.il

Abstract
We deal with the problem of locating facilities in an undirected graph G. Each of given p facilities is located on a vertex or edge of G, and provides distinct service required by all vertices. For each vertex v of G, the p-service distance of v is the summation of its shortest distances from v to the p facilities. The p-service center problem is to find locations of the p facilities in G to minimize the maximum value of p-service distances among all vertices. It is known that the problem is NP-hard for general graphs. In this paper we consider the decision version of the problem which asks whether there is a placement of the p facilities in G such that the p-service distance of each vertex in G is at most a given positive real number. In this paper we show that the p-service center decision problem is NP-complete even for split graphs with unweighted edges, and hence the p-service center problem is NP-hard even for split graphs.

ID: 80060
Title: The Multi-Service Center Decision Problem is NP-Complete for Split Graphs
Name: Xiao Zhou
Affiliation: Tohoku University
Email: zhou@ecei.tohoku.ac.jp

Abstract
We deal with the problem of locating facilities in an undirected graph G. Each of given p facilities is located on a vertex or edge of G, and provides distinct service required by all vertices. For each vertex v of G, the p-service distance of v is the summation of its shortest distances from v to the p facilities. The p-service center problem is to find locations of the p facilities in G to minimize the maximum value of p-service distances among all vertices. It is known that the problem is NP-hard for general graphs. In this paper we consider the decision version of the problem which asks whether there is a placement of the p facilities in G such that the p-service distance of each vertex in G is at most a given positive real number. In this paper we show that the p-service center decision problem is NP-complete even for split graphs with unweighted edges, and hence the p-service center problem is NP-hard even for split graphs.

ID: 80075
Title: Electrode Wear in Resistance Spot Welding of Zinc-Coated Steel Sheets
Name: DHEERENDRA DWIVEDI
Affiliation: Indian Institute of Technology Roorkee
Email: dkd04fme@iitr.ac.in

Abstract
This paper presents a study on wear behaviour of copper electrodes used in resistance spot welding (RSW) of zinc-coated steel sheets. To study this, a 0.6 mm thick zinc-coated steel sheet was spot welded using suitable combination of spot welding parameters and then electrode tip diameter, length of electrode and mass of electrode were measured after regular number of spot welds. Carbon imprint
method was used to get electrode face diameters and contact conditions at different weld numbers. It was observed that electrode wear increases with an increasing number of spot welds for zinc-coated steel which is indicated by increased weight loss of the copper electrode, reduction in the electrode length, and enlargement of the electrode tip diameter. Lower electrode undergoes higher wear than upper electrode. Increase in the number of spot welds also showed increased contamination of the electrode. Pit formation was found to be associated with removal of alloy products from the electrode surface.

ID: 80071
Title: Design Parametric Study for the Flow of R-407C inside a Capillary Tube
Name: Ravi Kumar
Affiliation: Indian Institute of Technology Roorkee
Email: ravikfme@iitr.ac.in

Abstract
An experimental investigation was carried out to observe the effect of sub-cooling degree on mass flow rate of R-407C through the adiabatic straight capillary tubes. The variation of mass flow rate with the sub-cooling degree is observed to be independent of capillary length for a given capillary diameter and capillary inlet pressure with an error band of ±1.5%. An average rise in refrigerant mass flow rate of 8.8, 14.3 and 16.5 percent was observed for capillary tube diameters of 1.02 mm, 1.27 mm and 1.52 mm respectively with an increase of sub-cooling from 5°C to 10°C.

ID: 80056
Title: 3D Software Technology, Applicable in Elaboration of the Spatial Face Gear Drives for Incorporation into Robot Systems
Name: Emiliya Abadzhieva
Affiliation: Akita University
Email: abadjieva@gipc.akita-u.ac.jp

Abstract
The study treats a specific technological approach for the elaboration of small manufacturing series of highly precise hyperboloid gears with small module of the teeth and with not big dimensions of the gear mechanism. It is based on the application of the elaborated by authors mathematical mod-els, algorithms and computer programs for synthesis upon a pitch contact point and upon a mesh region. A special feature of the established approach is the application of 3D software prototyping and 3D printing of the designed transmissions. The presented here models of the transmissions with crossed axes and face mated gears are indented for implementation into the driving of two type robots: bio-robot hand and walking robot with four insect-type legs.

ID: 80059
Title: Development of an Ultrasonic Motor that Uses an Inchworm Shaped Deformation of a Metallic plate
Name: Akihiro Naganawa
Affiliation: Akita University
Email: naganawa@ipc.akita-u.ac.jp

Abstract
At the present time, ultrasonic motors have been developed for a variety of purposes such as linear motion drives and rotational drives. The elaboration of an ultrasonic motor is time-consuming, because it is developed adapting on its application. In this study, a new ultrasonic motor structure that combines a piezoelectric element and a metallic plate is elaborated. The driving principle of this motor is that the metal plate is bent to an inchworm shape and rotates the rotor when the piezoelectric element is stretched. The objective of this study is to verify the functioning of the new motor experimentally.

ID: 80072
Title: Research on the Product Derivation Method under the Interaction Design Thinking
Name: Guangwei Liang
Affiliation: Beihang University
Email: liangguangwei@163.com

Abstract
Explore the new way of product derivation by integrating the interaction design thinking into the product derivation method. It analyzes the thinking mode of interaction design, describes how to make the product provide better experience for the user, from the perspective of the four elements of people, activity, context and technology, and shows how to combine interaction thinking for product derivation through the cases. Good products in addition to the realization of the function also need to meet the needs of the user experience. Product derived can get new methods and ideas from the interaction design of systematic thinking, so that products can provide better service for users in the digital era.

ID: 80096
Title: Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic
Name: Choi Young Hyu
Email: yhcho@changwon.ac.kr

Abstract
In case of manufacturing hexahedral ABS (Acrylonitrile Butadiene Styrene) plastic components using a FDM (Fused Deposition Modeling) – based 3D printer, undesirable shape errors occur in the product due to heat shrinkage. This paper experimentally observed the influence of the bed temperature change on the deformed shape errors of a hexahedral specimen of 100×50×50 mm3 produced by using a 3D printer. During printing work, the head nozzle temperature was kept at 240°C and the head speed was set at 50 mm/s. The chamber was enclosed with a PC-plate. 3D printing was conducted at four different bed temperatures; 50, 70, 90, and 110°C. After the produced specimens naturally cooled down to room temperature, their de-formed shape errors were measured. As a result, the higher the bed temperature, the lower the deformed shape errors of the specimens were. However, if the bed temperature had exceeded 120°C, laminating adhesion became poor. That seems to occur because of the material phase change and can make 3D printing work very hard as a consequence. Results of this study can be helpful to set optimum bed temperature condition in FDM additive manufacturing.

ID: 80076
Title: Cerium Separation from Light Rare Earth Concentrate by Liquid-Liquid Extraction
Name: Thiago Formiga
Affiliation: Centro de Desenvolvimento da Tecnologia Nuclear – CDTN, Belo Horizonte, Brazil
Email: tsformiga@gmail.com

Abstract
This work presents an investigation of solvent extraction parameters in order to obtain high purity cerium from a mixture containing other rare earths elements, as an alternative to oxidation and selective precipitation or dissolution. The study was carried out using a sample of sulfuric liquor obtained from the leaching of monazite rich in light rare earth elements, also referred as REE, (La, Ce, Pr, Nd) provided by INB (Nuclear Industries of Brazil). Experiments were carried out in chloridric, nitric and sulfuric media. The nitric and chloridric solutions were prepared by precipitation of the REE from the sulfuric liquor as rare earths oxalate, calcining the precipitate and dissolving it with nitric or hydrochloric acid. The separation of cerium was investigated in its trivalent and tetravalent forms. The parameters investigated were: type and concentration of extractant, type and amount of the oxidizing agent, liquor acidity, and volumetric ratio between organic and aqueous phases. The preference of the organic phase to extract cerium in its oxidized form (IV) over...
the other rare earths elements was confirmed, allowing the obtainment of a high purity cerium solution. The best results were achieved in nitric medium, with cerium in its tetravalent form, using cationic extractants (P507 or D2EHPA) and a mixture of potassium persulfate and silver chloride as oxidizing agents, yielding over 99% of cerium extraction with over 99% of purity.

ID: 80077
Title: Study of Separation of Zirconium and Hafnium by Solvent Extraction Technique
Name: Carlos Morais
Affiliation: Centro de Desenvolvimento da Tecnologia Nuclear – CDTN, Belo Horizonte, Brazil
Email: cmorais@cdtn.br

Abstract
This paper describes the study of the extraction of Zr and Hf in nitric and hydrochloric media by solvent extraction technique using different types of extractants. The effect of the extractants DEHPA, IONQUEST®801 and CYANEX®272, TBP, CYANEX®923, PRIMENE®JTM, ALAMINE®336 and ALIQUAT®336 was investigated. For acid extractants in both nitric and hydrochloric media, a high degree of extraction was observed, although they had low selectivity in separating the metals. For the acid extractants also, it was not possible to strip the metals from the organic phase through acid solutions. In this case, a stripping solution with very high acidity would be required, and this is not viable. When the basic extractants were used, no metal extraction was observed under the conditions investigated, indicating no extractable anionic species in either media. The optimum zirconium/hafnium separation was achieved using an acidity of 7.0 mol L⁻¹, nitrate concentration of 9.2 mmol L⁻¹ and 1.5 mol L⁻¹ of TBP. In these conditions, a separation factor of 12.6 was obtained.

ID: 80081
Title: Production of the modified liquid glass in the processing of kaolinitic clay
Name: Sarsenbay Gulfiya
Affiliation: Institute of Metallurgy and Beneficiation, JSC, Science and Education Ministry of the Republic of Kazakhstan, Almaty, Kazakhstan
Email: mer-pa@mail.ru

Abstract
Production of modified liquid glass and quartz materials from kaolinite clay of Alekseev deposit of Kazakhstan was studied. The sodium liquid glass processed by kaolinite clay, with chemical composition (g/dm³): SiO₂ - 350; Na₂O - 155; Al₂O₃ - 21; Fe₂O₃ - 0.3, silicate module - 2.33 and density - 1.49 g/cm³ has been used. The sodium liquid glass complies with the Russian Interstate standard 13078-81 for sodium liquid glass. 10 samples of modified liquid glass were synthesized by introducing modifiers in an amount of 4% by weight of the solution into the liquid glass. Hard quartz material produced by using synthesized modified liquid glass was obtained. It has been established that the obtained modified liquid glass from kaolinite clay can improve the strength of the quartz material for 1.6 - 3.12 times higher than the initial liquid glass. Using liquid glass modifier to the inorganic sodium nitrate (NaNO₃) increases the strength 3.12 times.

ID: 80022
Title: Cobalt Electrowinning Development for SX-EW Process
Name: Jianming Lu
Affiliation: University of British Columbia
Email: Jianming.Lu@ubc.ca

Abstract
The process of Minera y Metalúrgica del Boleo recovers cobalt from a complex oxide and sulfide ore by solvent extraction and electrowinning after the recovery of copper and zinc (as copper cathode and zinc sulfate monohydrate). As part of the process
development, cobalt electrowinning was systematically studied with respect to temperature, pH, pitting behaviour, deposit morphology, deposition stress and interfacial tension. Cobalt was deposited on a coated stainless steel mandrel cathode with exposed circles to allow plating of disk shaped deposits over the surface of the cathode which could be easily stripped after 5-7 days of deposition. A small individual area also prevents the detachment of a cobalt deposit from a cathode due to a high deposition stress. The morphology and pitting behaviour varied for different commercial cobalt raw materials used for making cobalt sulfate solution as they contained different impurities. In the temperature range from 50 to 65°C, a higher temperature results in a brighter deposit with more pits and smaller lateral dendrites. The cobalt deposition current efficiency was around 98% at pH 3.0 and was not sensitive to temperature. With decreasing pH from 3.5 to 2.0, the cobalt current efficiency decreased from 99 to 88% and the growth of lateral dendrites were significantly suppressed. The formation of pits resulted from the adhesion of hydrogen bubbles on the cobalt deposit. The adhesion of hydrogen bubbles was determined by the prevailing surface and interfacial tensions. Anti-pitting agents were used to change the interfacial and surface tensions in such a way that the detachment of bubbles were facilitated, resulting in a pit-free cobalt deposit. The anti-pitting agents affected the deposit morphology and internal stress. The impact of the anti-pitting agents on the disengagement of organic and aqueous phases during cobalt solvent extraction was also investigated. A pilot plant was built to successful verify the production of high quality electrolytic cobalt. Now Boleo cobalt electrowining plant has started the production.

ID: 80062
Title: Study of thermal and acoustic properties of casted metal-ceramic composite foams
Name: Katarzyna Gawdzinska
Affiliation: Maritime University of Szczecin
Email: k.gawdzinska@am.szczecin.pl

Abstract
Because of its features metallic foams can be used as good insulation material. Thermal and acoustic properties of casted metal-ceramic composite foams find their place in transportation objects and can act as fire resistant and acoustic bulkhead insulator. There are presented acoustic and thermal capabilities of proposed composite foams (AlSi11/SiC). Composite foam was prepared by the gas injection method, consisting in direct injection of gas into liquid metal.
Part V Instructions for Presentations

Oral Presentation

Devices Provided by the Conference Organizing Committee:

- Laptops (with MS-office & Adobe Reader)
- Projectors & Screen
- Laser Sticks

Materials Provided by the Presenters:

- PowerPoint or PDF files

Duration of each Presentation:

- Regular Oral Session: 10-15 Minutes of Presentation
- Plenary Speech: 30 Minutes of Presentation
Part VI Hotel Information

About Hotel

Guangdong Hotel (Shanghai) is located on Yi Xian Road, DaBaiShu industry & trading center in Shanghai, adjacent to the prestigious universities, such as Fudan, Tongji and Shanghai international studies university. DaBaiShu area is one of the 12 commercial zones in Shanghai, where conveniently linked by track line 3 and inner elevated ring road. Its 15 minutes ride to the Bund and Downtown area.

Address: 328 Yixian Road, Hongkou District, Shanghai
Contact Number: 86-21-55589888
Fax Number: 86-21-5512808
Website: http://www.shgdh.com/en

For non-Chinese author, please show the following info to the driver if you take a taxi:
请送我到：中国上海市虹口区逸仙路328号 上海楚天粤海大酒店
Contact Us

Organizing Committee

Secretary: Ms. Vivian

Telephone: +86 - 186 2773 7240

E-mail: cet@engii.org