[1] J. Bugrien, K. Mwitondi and F. Shuweihdi (2013). A Kernel Density Smoothing Method for Determining an Optimal Number of Clusters in Continuous Data; The 16th International Conference on Computational Methods and Experimental Measurements; 2 - 4 July, 2013, A Coru?a, Spain.
[2] A. R. Choudhuri, P. Chatterjee and J. Jiang (2007). Predicting Solar Cycle 24 with a Solar Dynamo Model; Physical Review Letters, Vol. 98, No. 13, American Phys. Society.
[3] A. Cuevas, M. Febrero and R. Fraiman, “Estimating the Number of Clusters,” The Canadian Journal of Statistics, Vol. 28, No. 2, pp. 367-382. doi:10.2307/3315985
[4] Cortes and Vapnik, “Support-vector Networks; Machine Learning,” Vol. 20, No. 3, pp. 273-297, Kluwer Academic Publishers. doi:10.1007/BF00994018
[5] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum Like-lihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Vol. 39, 1977, pp. 1-38.
[6] D. Hand, H. Mannila and P. Smyth, Principles of Data Mining (Adaptive Computation and Machine Learning); A Bradford Book; ISBN-13: 978-0262082907.
[7] R. P. Kane, “Solar Cycle Predictions Based on Extrapolation of Spectral Components: An Update,” A Journal for Solar and Solar-Stellar Research and the Study of Solar Terrestrial Physics, Vol. 246, No. 2, 2007, pp. 487-493.
[8] Kitiashvili, I. and Kosovichev, A. (2009). Prediction of solar magnetic cycles by a data assimilation method; Cosmic Magnetic Fields: From Planets, to Stars and Galaxies; Proceedings IAU Symposium, No. 259, Edited by Strassmeier, K, Kosovichev, A. and Beckman, J. (2009) - International Astronomical Union.
[9] G. McLachlan T. Krishnan, (1996). The EM Algorithm and Extensions; John Wiley.
[10] K. Mwitondi, R. Said and A. Yousif, “A Sequential Data Mining Method for Modelling Solar Magnetic Cycles,” Neural Information Processing, LNCS, Vol. 7663, pp 296-304, Springer 2012.
[11] NOOA (2012). http://www.ngdc.noaa.gov
[12] E. Pohtila, (1980). Climatic Fluctuations and Forestry in Lapland; Ecography, Vol. 3, No. 2, pp 65-136, ISSN: 1600-0587.
[13] R. Pielke, R. Avissar, M. Raupach, A. Dolman, X. Zeng and A. Denning, (1998). Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate; Global Change Biology, Vol. 4, No. 5, pp. 461-475.
[14] R. Qahwaji and T. Colak, (2007). Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations; SOLAR PHYSICS, Vol. 241, No. 1, pp. 195-211.
[15] R (2011). R Version 2.13.0 for Windows; R Foundation for Statistical Computing.
[16] D. Reames, Magnetic topology of impulsive and gradual solar energetic particle events; The Astrophysical Journal, Vol. 571, 2002, pp 63-66. doi:10.1086/341149
[17] S. J. Roberts, “Parametric and Non-parametric Unsupervised Cluster Analysis,” Pattern Recognition, Vol. 30, No. 5, 1997, pp. 261-272.
doi:10.1016/S0031-3203(96)00079-9
[18] M. J. Rycroft, S. Israelsson and C. Price, “The Global Atmospheric Electric Circuit, Solar Activity and Climate Change,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 62, No. 17-18, 2000, pp. 1563-1576.
[19] S. H. Schwabe,. AstronomischeNachrich-ten, Vol. 20, No. 495, 1843, pp. 234-235.
[20] G. L. Siscoe, Solar–terrestrial Influences on Weather and Climate; Climatology Supplement, Nature, Vol. 276, pp. 348-352.
[21] B. W. Silverman, Using Kernel Density Estimates to Investigate Multimodality, Journal of the Royal Statistical Society, B, 43, 1981, pp 97-99.
[22] J. R. Wolf, New studies of the period of Suns-pots and their meanings; Communications of Natural History; Society in Bern, 255,1852, pp 249-270.