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Abstract—In this article we study the approximation of
multivariate distribution functions by means of Taylor series.
We generalize two-dimensional Edgeworth expansion to three-
dimensional case. We develop the results presented in the paper
[11].

I. INTRODUCTION

In this paper we present one method to approximate the
unknown multivariate distribution function with known distri-
bution function. The method is based on Taylor expansion.
This method is in last 20 years relatively well studied. The
idea of approximation by means of Taylor series in univarite
case was suggested by R. A. Fisher and E. A. Cornish
in [1]. The approximation distribution functions of random
variables in multivariate case needs application of results of
matrix algebra. In the multivariate case a relation between
two densities is obtained by using matrix derivative. Different
variants of matrix derivative (Frechet derivative in matrix
form) and related matrix algebra were examined and developed
by different authors: P. J. Dwyer and M. S. MacPhail [2],
H. Neudecker ([9]), E. C. MacRae ([7]) and T. Kollo ([6]).
In the papers T. Kollo and D. von Rosen ([4] and [5]), a
method is worked out which enables to present a complicated
multivariate density of interest through the known density
and cumulants of both distributions under consideration. In
applications approximation of the distribution function is at
least as important as of the density function. In univariate
case an expansion of the distribution function can be obtained
from a density expansion by integration. In multivariate case
the situation is much more complicated.

In the multivariate density approximations higher order
matrix derivatives are represented by matrices with growing
dimensionalities. For integration of expansions a new notion
- matrix integral is needed. The notion has to be an inverse
operation of the matrix derivative. A solution to the problem
is given in the paper [10] where matrix integral is introduced
and its basic properties studied.

The aim of this paper is to develop the results presented in
[11].

The paper is organized in the following way. In Sections 2
and 3 we study results of matrix algebra applied on Edgeworth
expansion. In Section 4 we present so called approximating
operators in three-dimensional case. In Section 5 we realize
Edgeworth expansion in two- and three-dimensional cases.

II. PREPARATION

In this section we present the results of matrix algebra
applied on Edgeworth expansion.

Let us denote matrix X with p rows and q columns by
X : p × q. The element of matrix X in the i-th row and j-
th column is denoted by xij . For matrices X consisting of
complex expressions of matrices the notation xij = (X)ij is
also used. A p×1-matrix is called p-vector. The i-th coordinate
of the p-vector a is denoted by ai. A p-vector with zeros as
coordinates is denoted as 0p.

Now we describe main matrix operations from so-called
newer matrix algebra ([8]). If we handle partitioned matrix X
then its blocks in the i-th row and j-th column of block is
denoted by [X]ij .

The vectorization operation is denoted by vec. For matrix
X : p× q the following pq-vector is denoted by vecX:

vecX = (x11, . . . , xp1, x12, . . . , xp2, . . . x1q, . . . , xpq)′.

A useful operation in multivariate statistics is the Kronecker
product. This operation is denoted by ⊗. Let us have matrices
X : p× q and Y : r× s. Then the Kronecker product X⊗Y
is the pr × qs-matrix which is partitioned into r × s blocks:

X⊗Y = [xljY], l = 1, 2, ..., p; j = 1, 2, ..., q

where

xljY =




xljy11 · · · xljy1s
...

. . .
...

xljyr1 · · · xljyrs


 .

The Kroneckerian k-th power of a p-vector a is the pk-vector
a⊗k,

a⊗k = a⊗ a⊗ . . .⊗ a︸ ︷︷ ︸
k times

, k = 1, 2, . . . .

For k = 0, we define a⊗0 = 1. Let A be an r×s matrix. Then
rk× sk-matrix A⊗k is called the Kroneckerian k-th power of
A and is defined as k times Kronecker product of A to itself:

A⊗k = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
k times

with A⊗0 = 1.
Let the elements of the matrix Y : r × s be functions of

matrix X : p × q. Assume that for all i = 1, 2, ..., p, j =



1, 2, ..., q, k = 1, 2, ..., r and l = 1, 2, ..., s partial derivatives
∂ykl

∂xij
exist and are continuous in an open set A. Then the

matrix derivative is defined as follows.
The matrix

dY
dX

: rs × pq is called matrix derivative of
Y : r × s by X : p× q in a set A, if

dY
dX

=
d

dvec′X
⊗ vecY

where

d

dvec′X
= (

∂

∂x11
, . . . ,

∂

∂xp1
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq
).

There exists also another widely used form of the matrix
derivative. The matrix derivative defined by MacRae ([7])
keeps the structure of involved matrices.

The matrix
∂Y
∂X

: pr × qs is called matrix derivative of
Y : r × s by X : p× q in a set A, if

∂Y
∂X

=
d

dX
⊗Y

where

d

dX
=




∂
∂x11

· · · ∂
∂x1q

...
. . .

...
∂

∂xp1
· · · ∂

∂xpq


 .

In approximation of multivariate distribution functions the
inverse operation of matrix derivative is needed. The notion
”matrix integral” has been introduced in [10]. In the paper [10]
beside basic properties of the matrix integral several examples
are given to demonstrate practical usage of the notion.

The definition of matrix integrals based on the MacRae’s
matrix derivative is defined as follows.

Let Z : rs×pq be a function of X : p×q. A matrix Y(X) :
r × s is called the matrix integral of Z = Z(X) : rs × pq
where X : p× q, if

∂Y(X)
∂X

= Z.

The fact that matrix Y is the matrix integral of a matrix Z
is denoted as ∫

<pq

Z ◦ dX = Y.

If Y is a matrix integral of matrix Z, then also Y + C is a
matrix integral of Z, where C is a constant matrix with the
same dimensions as matrix Y. Definition ?? is used also to
define the definite matrix integral.

A difference
∫ B

A
Z ◦ dX = Y(B) − Y(A) is called the

definite matrix integral of matrix Z from A to B.
When the matrix derivative increases the dimensions of the

differentiated matrix, then the matrix integral decreases the
dimensions of the integrated matrix.

The matrix integral can find by means of star product of
matrices. his operation is introduced in [7]. She has denoted
this operation by ∗.

Let us have matrix A : p × q and partitioned-matrix B :
pr × qs, consisting of r × s blocks. Then the star product
A ∗B : r × s is defined as

A ∗B =
p∑

l=1

q∑

j=1

alj [B]lj

where the blocks [B]lj are r × s-matrices.
It is seen that the star product decreases the dimensions of

involved matrices.
The technic how to find the matrix integral by means of star

product is presented in [10].

III. MATRIX TECHNIQUES ON APPROXIMATION OF
DISTRIBUTIONS

First we study cumulants of a random vector. Let us have a
random p-vector X with coordinates Xi, i = 1, 2, ..., p. Let x
be a realization of this vector. The characteristic function of
the random vector X is defined as follows:

ϕX(t) = E(eit′X), t ∈ <p.

The cumulant function of the random vector X is given by
equality

φX(t) = ln(ϕX(t)), t ∈ <p.

The k-th order cumulant ck(X) of X is the k-th matrix
derivative of the cumulant function:

ck(X) =
1
ik

dkφX(t)
dtk

∣∣∣∣
t=0p

. (1)

The technique of two density values integration is presented
in [11]. In this paper the general equation between two distri-
bution functions are presented. We can present this equation
present formally as follows:

FY(x) = (1−(a,
d

dx
)+(vecB,

d

dx

⊗2

)−(vecC,
d

dx

⊗3

)+. . .)FX(x)
(2)

where FX in known distribution function, FY is unknown
distribution function, p-vector

a = (E(X)−E(Y)),

p× p-matrix

B =
1
2
[(Y)−D(X) + (E(Y)− E(X))(E(Y)− E(X))′]

and p2 × p-matrix

C =
1
6
[(c3(Y)−c3(X))+3(D(Y)−D(X))⊗(E(Y)−E(X))

+(E(Y)− E(X))⊗2(E(Y)− E(X))′].

Matrix C can also be considered as a partitioned matrix
consisting of p blocks where each block is a p × p-matrix.
For statistical meanings of vector a and matrices B and C
interested reader can see in [4].



IV. APPROXIMATION IN THREE-DIMENSIONAL CASE

In this section we apply the operator described by equality
(2) in three-dimensional case. Let fX(x) be the probability
density function of random vector X. Let the marginal density
functions are denoted as fi(xi) and fij(xi, xj) where i, j =
1, 2, ..., p. Then for part of Mean value we get

(a,
d

dx
)FX(x) = −a1fX(x)+

+(a1 − a2)f2(x2)F (x1, x3|x2)+

+(a1 − a3)f3(x3)F (x1, x2|x3). (3)

Part of variance can present as follows:

(vecB,
d

dx

⊗2

)FX(x) =
3∑

i=1

∂fi(xi)F (x−i|xi)
∂xi

+

+2b12F (x3|x1, x2)f(x1, x2)+

+2b13F (x2|x1, x3)f(x1, x3)+

+2b23F (x1|x2, x3)f(x2, x3). (4)

Part of skewness is presented by the following form:

(vecC,
d

dx

⊗3

)FX(x) =

−9
3∑

i,j=1

(c(j,j)(1,i) + c(j,i)(1,j) + c(i,j)(1,j))×

×
(

∂fij(xi, xj)
∂xj

F (x−i−j |xi, xj)+

+fij(xi, xj)
∂F (x−i−j |xi, xj)

∂xj

)
−

−9
3∑

i,j=1

(c(i,i)(1,j) + c(i,j)(1,i) + c(j,i)(1,i))×

×
(

∂fij(xi, xj)
∂xi

F (x−i−j |xi, xj)+

+fij(xi, xj)
∂F (x−i−j |xi, xj)

∂xi

)
− 6fX(x). (5)

The operators (3)-(5) in p-dimensional case are presented
in [11].

V. EDGEWORTH EXPANSION

Let us introduce for p-variate normal distribution with mean
value 0p and covariance matrix Σ the notation Np(0,Σ). Let
σij be the element of ith row on jth of matrix Sigma. In [11]
the unknown bivariate distribution function is approximated
through the normal distribution N2(0,Σ).

We introduce first the Hermite matrix-polynomials for a p-
vector x. By means of these functions we can easily approx-
imate the unknown distribution with the normal distribution.
The approximation by Hermite polynomials is first time used
in [3]. We call this type of approximation as Edgeworth type
expansion.

Let x be a p-vector. Then the matrix Hk(x,Σ) is called
Hermite matrix-polynomial if it is defined by the equality

dkfX(x)
dxk

= (−1)kHk(x,Σ)fX(x), k = 1, 2, . . .

where fX(x) is the density function of the normal distribution
Np(0,Σ). In the univariate case when X ∼ N(0, σ2) the
Hermite polynomials hi(x), i = 0, 1, 2 take the following
form:

h0(x) = 1,

h1(x) = xσ−2

and
h2(x) = x2σ−4 − σ−2.

The Hermite matrix polynomials up to the third order are
given by equalities in [6].

Let FX(x) be two-dimensional normal distribution function.
Then applying operators (3)-(5) we get for unknown distribu-
tion function FY(x) the following equation:

FY(x) = FX(x) + {a2 + 2b12 + (C12,H1(x,Σ))}fX(x)

+{(a1 − a2)f2(x2)}Φ(g(x2))

−b11{h1(x1)− g′(x1))f1(x1)}Φ(g(x1))

−b22{h1(x2)− g′(x2))f2(x2)}Φ(g(x2))

−c(1,1)(1,1){h2(x1)f1(x1)Φ(g(x1))

−2h1(x1)f1(x1)f1(g(x1))g′(x1)

−f1(x1))h1(g(x1))f1(g(x1))g′(x1)2}
−c(2,2)(1,2){h2(x2)f2(x2)Φ(g(x2))

−2h1(x2)f2(x2)f1(g(x2))g′(x2)

−f2(x2)h1(g(x2))f2(g(x2))g′(x2)2}+ . . . (6)

where

C12 =
(

c(1,1)(1,2) + c(1,2)(1,1) + c(2,1)(1,1)

c(2,2)(1,1) + c(2,1)(1,2) + c(1,2)(1,2)

)
,

g(x1) =
x2√
σ22

− x1√
σ11

ρ
√

1− ρ2
,



and

g(x2) =
x1√
σ11

− x2√
σ22

ρ
√

1− ρ2

where ρ is linear correlation coefficient between random
variables X1 and X2 and Φ(x) denotes the standard normal
distribution functuion.

Now we generalize Edgeworth expansion presented in [11]
to three-dimensional case. Approximating the unknown distri-
bution function with normal distribution N3(0,Σ) we get

∂FX(x1, x2, x3)
∂x1

=
∂

∂xi

∫ x1

−∞

∫ x2

−∞

∫ x3

−∞
fX(u1, u2, u3)du1du2du3 =

=
∫ x2

−∞

∫ x3

−∞
fX(x1, u2, u3)du2du3 =

=
∫ x2

−∞

∫ x3

−∞
fX(u2, u3|x1)f1(x1)du2du3 =

= f1(x1)FX(x2, x3|x1).

In the same way we get that

∂FX(x)
∂x2

= f2(x2)FX(x1, x3|x2)

and
∂FX(x)

∂x3
= f3(x3)FX(x1, x2|x3).

For the term of second order derivative we get

∂2FX(x1, x2, x3)
∂x1∂x2

= f12(x1, x2)FX(x3|x1, x2),

∂2FX(x1, x2, x3)
∂x1∂x3

= f13(x1, x3)FX(x2|x1, x3)

and

∂2FX(x1, x2, x3)
∂x2∂x3

= f23(x2, x3)FX(x1|x2, x3).

For the term of third order derivative we get

∂3FX(x1, x2, x3)
∂x1∂x2∂x3

= fX(x).

VI. CONCLUSION

The Edgeworth expansion can use when the components
of unknown random vector are strongly dependent but this
dependance is not linear. In [11] the Edgeworth expansion
is applied to on forestry data where the joint distribution
function of trees height and trees diameter at brest height is
approximated. For further developments is planned to apply
equation (6) on three-dimensional case.
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